Source code for doctr.datasets.ic03

# Copyright (C) 2021-2025, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

import os
from typing import Any

import defusedxml.ElementTree as ET
import numpy as np
from tqdm import tqdm

from .datasets import VisionDataset
from .utils import convert_target_to_relative, crop_bboxes_from_image

__all__ = ["IC03"]


[docs] class IC03(VisionDataset): """IC03 dataset from `"ICDAR 2003 Robust Reading Competitions: Entries, Results and Future Directions" <http://www.iapr-tc11.org/mediawiki/index.php?title=ICDAR_2003_Robust_Reading_Competitions>`_. .. image:: https://doctr-static.mindee.com/models?id=v0.5.0/ic03-grid.png&src=0 :align: center >>> from doctr.datasets import IC03 >>> train_set = IC03(train=True, download=True) >>> img, target = train_set[0] Args: train: whether the subset should be the training one use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones) recognition_task: whether the dataset should be used for recognition task detection_task: whether the dataset should be used for detection task **kwargs: keyword arguments from `VisionDataset`. """ TRAIN = ( "http://www.iapr-tc11.org/dataset/ICDAR2003_RobustReading/TrialTrain/scene.zip", "9d86df514eb09dd693fb0b8c671ef54a0cfe02e803b1bbef9fc676061502eb94", "ic03_train.zip", ) TEST = ( "http://www.iapr-tc11.org/dataset/ICDAR2003_RobustReading/TrialTest/scene.zip", "dbc4b5fd5d04616b8464a1b42ea22db351ee22c2546dd15ac35611857ea111f8", "ic03_test.zip", ) def __init__( self, train: bool = True, use_polygons: bool = False, recognition_task: bool = False, detection_task: bool = False, **kwargs: Any, ) -> None: url, sha256, file_name = self.TRAIN if train else self.TEST super().__init__( url, file_name, sha256, True, pre_transforms=convert_target_to_relative if not recognition_task else None, **kwargs, ) if recognition_task and detection_task: raise ValueError( "`recognition_task` and `detection_task` cannot be set to True simultaneously. " + "To get the whole dataset with boxes and labels leave both parameters to False." ) self.train = train self.data: list[tuple[str | np.ndarray, str | dict[str, Any] | np.ndarray]] = [] np_dtype = np.float32 # Load xml data tmp_root = ( os.path.join(self.root, "SceneTrialTrain" if self.train else "SceneTrialTest") if sha256 else self.root ) xml_tree = ET.parse(os.path.join(tmp_root, "words.xml")) xml_root = xml_tree.getroot() for image in tqdm(iterable=xml_root, desc="Preparing and Loading IC03", total=len(xml_root)): name, _resolution, rectangles = image # File existence check if not os.path.exists(os.path.join(tmp_root, name.text)): raise FileNotFoundError(f"unable to locate {os.path.join(tmp_root, name.text)}") if use_polygons: # (x, y) coordinates of top left, top right, bottom right, bottom left corners _boxes = [ [ [float(rect.attrib["x"]), float(rect.attrib["y"])], [float(rect.attrib["x"]) + float(rect.attrib["width"]), float(rect.attrib["y"])], [ float(rect.attrib["x"]) + float(rect.attrib["width"]), float(rect.attrib["y"]) + float(rect.attrib["height"]), ], [float(rect.attrib["x"]), float(rect.attrib["y"]) + float(rect.attrib["height"])], ] for rect in rectangles ] else: # x_min, y_min, x_max, y_max _boxes = [ [ float(rect.attrib["x"]), # type: ignore[list-item] float(rect.attrib["y"]), # type: ignore[list-item] float(rect.attrib["x"]) + float(rect.attrib["width"]), # type: ignore[list-item] float(rect.attrib["y"]) + float(rect.attrib["height"]), # type: ignore[list-item] ] for rect in rectangles ] # filter images without boxes if len(_boxes) > 0: boxes: np.ndarray = np.asarray(_boxes, dtype=np_dtype) # Get the labels labels = [lab.text for rect in rectangles for lab in rect if lab.text] if recognition_task: crops = crop_bboxes_from_image(img_path=os.path.join(tmp_root, name.text), geoms=boxes) for crop, label in zip(crops, labels): if crop.shape[0] > 0 and crop.shape[1] > 0 and len(label) > 0 and " " not in label: self.data.append((crop, label)) elif detection_task: self.data.append((name.text, boxes)) else: self.data.append((name.text, dict(boxes=boxes, labels=labels))) self.root = tmp_root def extra_repr(self) -> str: return f"train={self.train}"