Source code for doctr.datasets.iiit5k

# Copyright (C) 2021-2025, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

import os
from typing import Any

import numpy as np
import scipy.io as sio
from tqdm import tqdm

from .datasets import VisionDataset
from .utils import convert_target_to_relative

__all__ = ["IIIT5K"]


[docs] class IIIT5K(VisionDataset): """IIIT-5K character-level localization dataset from `"BMVC 2012 Scene Text Recognition using Higher Order Language Priors" <https://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/images/Projects/SceneTextUnderstanding/home/mishraBMVC12.pdf>`_. .. image:: https://doctr-static.mindee.com/models?id=v0.5.0/iiit5k-grid.png&src=0 :align: center >>> # NOTE: this dataset is for character-level localization >>> from doctr.datasets import IIIT5K >>> train_set = IIIT5K(train=True, download=True) >>> img, target = train_set[0] Args: train: whether the subset should be the training one use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones) recognition_task: whether the dataset should be used for recognition task detection_task: whether the dataset should be used for detection task **kwargs: keyword arguments from `VisionDataset`. """ URL = "https://cvit.iiit.ac.in/images/Projects/SceneTextUnderstanding/IIIT5K-Word_V3.0.tar.gz" SHA256 = "7872c9efbec457eb23f3368855e7738f72ce10927f52a382deb4966ca0ffa38e" def __init__( self, train: bool = True, use_polygons: bool = False, recognition_task: bool = False, detection_task: bool = False, **kwargs: Any, ) -> None: super().__init__( self.URL, None, file_hash=self.SHA256, extract_archive=True, pre_transforms=convert_target_to_relative if not recognition_task else None, **kwargs, ) if recognition_task and detection_task: raise ValueError( "`recognition_task` and `detection_task` cannot be set to True simultaneously. " + "To get the whole dataset with boxes and labels leave both parameters to False." ) self.train = train # Load mat data tmp_root = os.path.join(self.root, "IIIT5K") if self.SHA256 else self.root mat_file = "trainCharBound" if self.train else "testCharBound" mat_data = sio.loadmat(os.path.join(tmp_root, f"{mat_file}.mat"))[mat_file][0] self.data: list[tuple[str | np.ndarray, str | dict[str, Any] | np.ndarray]] = [] np_dtype = np.float32 for img_path, label, box_targets in tqdm( iterable=mat_data, desc="Preparing and Loading IIIT5K", total=len(mat_data) ): _raw_path = img_path[0] _raw_label = label[0] # File existence check if not os.path.exists(os.path.join(tmp_root, _raw_path)): raise FileNotFoundError(f"unable to locate {os.path.join(tmp_root, _raw_path)}") if use_polygons: # (x, y) coordinates of top left, top right, bottom right, bottom left corners box_targets = [ [ [box[0], box[1]], [box[0] + box[2], box[1]], [box[0] + box[2], box[1] + box[3]], [box[0], box[1] + box[3]], ] for box in box_targets ] else: # xmin, ymin, xmax, ymax box_targets = [[box[0], box[1], box[0] + box[2], box[1] + box[3]] for box in box_targets] if recognition_task: self.data.append((_raw_path, _raw_label)) elif detection_task: self.data.append((_raw_path, np.asarray(box_targets, dtype=np_dtype))) else: # label are casted to list where each char corresponds to the character's bounding box self.data.append(( _raw_path, dict(boxes=np.asarray(box_targets, dtype=np_dtype), labels=list(_raw_label)), )) self.root = tmp_root def extra_repr(self) -> str: return f"train={self.train}"