Source code for doctr.datasets.svt

# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

import os
from typing import Any, Dict, List, Tuple, Union

import defusedxml.ElementTree as ET
import numpy as np
from tqdm import tqdm

from .datasets import VisionDataset
from .utils import convert_target_to_relative, crop_bboxes_from_image

__all__ = ["SVT"]


[docs] class SVT(VisionDataset): """SVT dataset from `"The Street View Text Dataset - UCSD Computer Vision" <http://vision.ucsd.edu/~kai/svt/>`_. .. image:: https://doctr-static.mindee.com/models?id=v0.5.0/svt-grid.png&src=0 :align: center >>> from doctr.datasets import SVT >>> train_set = SVT(train=True, download=True) >>> img, target = train_set[0] Args: ---- train: whether the subset should be the training one use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones) recognition_task: whether the dataset should be used for recognition task **kwargs: keyword arguments from `VisionDataset`. """ URL = "http://vision.ucsd.edu/~kai/svt/svt.zip" SHA256 = "63b3d55e6b6d1e036e2a844a20c034fe3af3c32e4d914d6e0c4a3cd43df3bebf" def __init__( self, train: bool = True, use_polygons: bool = False, recognition_task: bool = False, **kwargs: Any, ) -> None: super().__init__( self.URL, None, self.SHA256, True, pre_transforms=convert_target_to_relative if not recognition_task else None, **kwargs, ) self.train = train self.data: List[Tuple[Union[str, np.ndarray], Union[str, Dict[str, Any]]]] = [] np_dtype = np.float32 # Load xml data tmp_root = os.path.join(self.root, "svt1") if self.SHA256 else self.root xml_tree = ( ET.parse(os.path.join(tmp_root, "train.xml")) if self.train else ET.parse(os.path.join(tmp_root, "test.xml")) ) xml_root = xml_tree.getroot() for image in tqdm(iterable=xml_root, desc="Unpacking SVT", total=len(xml_root)): name, _, _, _resolution, rectangles = image # File existence check if not os.path.exists(os.path.join(tmp_root, name.text)): raise FileNotFoundError(f"unable to locate {os.path.join(tmp_root, name.text)}") if use_polygons: # (x, y) coordinates of top left, top right, bottom right, bottom left corners _boxes = [ [ [float(rect.attrib["x"]), float(rect.attrib["y"])], [float(rect.attrib["x"]) + float(rect.attrib["width"]), float(rect.attrib["y"])], [ float(rect.attrib["x"]) + float(rect.attrib["width"]), float(rect.attrib["y"]) + float(rect.attrib["height"]), ], [float(rect.attrib["x"]), float(rect.attrib["y"]) + float(rect.attrib["height"])], ] for rect in rectangles ] else: # x_min, y_min, x_max, y_max _boxes = [ [ float(rect.attrib["x"]), # type: ignore[list-item] float(rect.attrib["y"]), # type: ignore[list-item] float(rect.attrib["x"]) + float(rect.attrib["width"]), # type: ignore[list-item] float(rect.attrib["y"]) + float(rect.attrib["height"]), # type: ignore[list-item] ] for rect in rectangles ] boxes: np.ndarray = np.asarray(_boxes, dtype=np_dtype) # Get the labels labels = [lab.text for rect in rectangles for lab in rect] if recognition_task: crops = crop_bboxes_from_image(img_path=os.path.join(tmp_root, name.text), geoms=boxes) for crop, label in zip(crops, labels): if crop.shape[0] > 0 and crop.shape[1] > 0 and len(label) > 0: self.data.append((crop, label)) else: self.data.append((name.text, dict(boxes=boxes, labels=labels))) self.root = tmp_root def extra_repr(self) -> str: return f"train={self.train}"