# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple
import tensorflow as tf
from tensorflow.keras import Model, Sequential, layers
from doctr.datasets import VOCABS
from doctr.utils.repr import NestedObject
from ...classification import resnet31
from ...utils.tensorflow import _bf16_to_float32, _build_model, load_pretrained_params
from ..core import RecognitionModel, RecognitionPostProcessor
__all__ = ["SAR", "sar_resnet31"]
default_cfgs: Dict[str, Dict[str, Any]] = {
"sar_resnet31": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (32, 128, 3),
"vocab": VOCABS["french"],
"url": "https://doctr-static.mindee.com/models?id=v0.9.0/sar_resnet31-5a58806c.weights.h5&src=0",
},
}
class SAREncoder(layers.Layer, NestedObject):
"""Implements encoder module of the SAR model
Args:
----
rnn_units: number of hidden rnn units
dropout_prob: dropout probability
"""
def __init__(self, rnn_units: int, dropout_prob: float = 0.0) -> None:
super().__init__()
self.rnn = Sequential([
layers.LSTM(units=rnn_units, return_sequences=True, recurrent_dropout=dropout_prob),
layers.LSTM(units=rnn_units, return_sequences=False, recurrent_dropout=dropout_prob),
])
def call(
self,
x: tf.Tensor,
**kwargs: Any,
) -> tf.Tensor:
# (N, C)
return self.rnn(x, **kwargs)
class AttentionModule(layers.Layer, NestedObject):
"""Implements attention module of the SAR model
Args:
----
attention_units: number of hidden attention units
"""
def __init__(self, attention_units: int) -> None:
super().__init__()
self.hidden_state_projector = layers.Conv2D(
attention_units,
1,
strides=1,
use_bias=False,
padding="same",
kernel_initializer="he_normal",
)
self.features_projector = layers.Conv2D(
attention_units,
3,
strides=1,
use_bias=True,
padding="same",
kernel_initializer="he_normal",
)
self.attention_projector = layers.Conv2D(
1,
1,
strides=1,
use_bias=False,
padding="same",
kernel_initializer="he_normal",
)
self.flatten = layers.Flatten()
def call(
self,
features: tf.Tensor,
hidden_state: tf.Tensor,
**kwargs: Any,
) -> tf.Tensor:
[H, W] = features.get_shape().as_list()[1:3]
# shape (N, H, W, vgg_units) -> (N, H, W, attention_units)
features_projection = self.features_projector(features, **kwargs)
# shape (N, 1, 1, rnn_units) -> (N, 1, 1, attention_units)
hidden_state = tf.expand_dims(tf.expand_dims(hidden_state, axis=1), axis=1)
hidden_state_projection = self.hidden_state_projector(hidden_state, **kwargs)
projection = tf.math.tanh(hidden_state_projection + features_projection)
# shape (N, H, W, attention_units) -> (N, H, W, 1)
attention = self.attention_projector(projection, **kwargs)
# shape (N, H, W, 1) -> (N, H * W)
attention = self.flatten(attention)
attention = tf.nn.softmax(attention)
# shape (N, H * W) -> (N, H, W, 1)
attention_map = tf.reshape(attention, [-1, H, W, 1])
glimpse = tf.math.multiply(features, attention_map)
# shape (N, H * W) -> (N, C)
return tf.reduce_sum(glimpse, axis=[1, 2])
class SARDecoder(layers.Layer, NestedObject):
"""Implements decoder module of the SAR model
Args:
----
rnn_units: number of hidden units in recurrent cells
max_length: maximum length of a sequence
vocab_size: number of classes in the model alphabet
embedding_units: number of hidden embedding units
attention_units: number of hidden attention units
num_decoder_cells: number of LSTMCell layers to stack
dropout_prob: dropout probability
"""
def __init__(
self,
rnn_units: int,
max_length: int,
vocab_size: int,
embedding_units: int,
attention_units: int,
num_decoder_cells: int = 2,
dropout_prob: float = 0.0,
) -> None:
super().__init__()
self.vocab_size = vocab_size
self.max_length = max_length
self.embed = layers.Dense(embedding_units, use_bias=False)
self.embed_tgt = layers.Embedding(embedding_units, self.vocab_size + 1)
self.lstm_cells = layers.StackedRNNCells([
layers.LSTMCell(rnn_units, implementation=1) for _ in range(num_decoder_cells)
])
self.attention_module = AttentionModule(attention_units)
self.output_dense = layers.Dense(self.vocab_size + 1, use_bias=True)
self.dropout = layers.Dropout(dropout_prob)
def call(
self,
features: tf.Tensor,
holistic: tf.Tensor,
gt: Optional[tf.Tensor] = None,
**kwargs: Any,
) -> tf.Tensor:
if gt is not None:
gt_embedding = self.embed_tgt(gt, **kwargs)
logits_list: List[tf.Tensor] = []
for t in range(self.max_length + 1): # 32
if t == 0:
# step to init the first states of the LSTMCell
states = self.lstm_cells.get_initial_state(
inputs=None, batch_size=features.shape[0], dtype=features.dtype
)
prev_symbol = holistic
elif t == 1:
# step to init a 'blank' sequence of length vocab_size + 1 filled with zeros
# (N, vocab_size + 1) --> (N, embedding_units)
prev_symbol = tf.zeros([features.shape[0], self.vocab_size + 1], dtype=features.dtype)
prev_symbol = self.embed(prev_symbol, **kwargs)
else:
if gt is not None and kwargs.get("training", False):
# (N, embedding_units) -2 because of <bos> and <eos> (same)
prev_symbol = self.embed(gt_embedding[:, t - 2], **kwargs)
else:
# -1 to start at timestep where prev_symbol was initialized
index = tf.argmax(logits_list[t - 1], axis=-1)
# update prev_symbol with ones at the index of the previous logit vector
prev_symbol = self.embed(self.embed_tgt(index, **kwargs), **kwargs)
# (N, C), (N, C) take the last hidden state and cell state from current timestep
_, states = self.lstm_cells(prev_symbol, states, **kwargs)
# states = (hidden_state, cell_state)
hidden_state = states[0][0]
# (N, H, W, C), (N, C) --> (N, C)
glimpse = self.attention_module(features, hidden_state, **kwargs)
# (N, C), (N, C) --> (N, 2 * C)
logits = tf.concat([hidden_state, glimpse], axis=1)
logits = self.dropout(logits, **kwargs)
# (N, vocab_size + 1)
logits_list.append(self.output_dense(logits, **kwargs))
# (max_length + 1, N, vocab_size + 1) --> (N, max_length + 1, vocab_size + 1)
return tf.transpose(tf.stack(logits_list[1:]), (1, 0, 2))
class SAR(Model, RecognitionModel):
"""Implements a SAR architecture as described in `"Show, Attend and Read:A Simple and Strong Baseline for
Irregular Text Recognition" <https://arxiv.org/pdf/1811.00751.pdf>`_.
Args:
----
feature_extractor: the backbone serving as feature extractor
vocab: vocabulary used for encoding
rnn_units: number of hidden units in both encoder and decoder LSTM
embedding_units: number of embedding units
attention_units: number of hidden units in attention module
max_length: maximum word length handled by the model
num_decoder_cells: number of LSTMCell layers to stack
dropout_prob: dropout probability for the encoder and decoder
exportable: onnx exportable returns only logits
cfg: dictionary containing information about the model
"""
_children_names: List[str] = ["feat_extractor", "encoder", "decoder", "postprocessor"]
def __init__(
self,
feature_extractor,
vocab: str,
rnn_units: int = 512,
embedding_units: int = 512,
attention_units: int = 512,
max_length: int = 30,
num_decoder_cells: int = 2,
dropout_prob: float = 0.0,
exportable: bool = False,
cfg: Optional[Dict[str, Any]] = None,
) -> None:
super().__init__()
self.vocab = vocab
self.exportable = exportable
self.cfg = cfg
self.max_length = max_length + 1 # Add 1 timestep for EOS after the longest word
self.feat_extractor = feature_extractor
self.encoder = SAREncoder(rnn_units, dropout_prob)
self.decoder = SARDecoder(
rnn_units,
self.max_length,
len(vocab),
embedding_units,
attention_units,
num_decoder_cells,
dropout_prob,
)
self.postprocessor = SARPostProcessor(vocab=vocab)
@staticmethod
def compute_loss(
model_output: tf.Tensor,
gt: tf.Tensor,
seq_len: tf.Tensor,
) -> tf.Tensor:
"""Compute categorical cross-entropy loss for the model.
Sequences are masked after the EOS character.
Args:
----
gt: the encoded tensor with gt labels
model_output: predicted logits of the model
seq_len: lengths of each gt word inside the batch
Returns:
-------
The loss of the model on the batch
"""
# Input length : number of timesteps
input_len = tf.shape(model_output)[1]
# Add one for additional <eos> token
seq_len = seq_len + 1
# One-hot gt labels
oh_gt = tf.one_hot(gt, depth=model_output.shape[2])
# Compute loss
cce = tf.nn.softmax_cross_entropy_with_logits(oh_gt, model_output)
# Compute mask
mask_values = tf.zeros_like(cce)
mask_2d = tf.sequence_mask(seq_len, input_len)
masked_loss = tf.where(mask_2d, cce, mask_values)
ce_loss = tf.math.divide(tf.reduce_sum(masked_loss, axis=1), tf.cast(seq_len, model_output.dtype))
return tf.expand_dims(ce_loss, axis=1)
def call(
self,
x: tf.Tensor,
target: Optional[List[str]] = None,
return_model_output: bool = False,
return_preds: bool = False,
**kwargs: Any,
) -> Dict[str, Any]:
features = self.feat_extractor(x, **kwargs)
# vertical max pooling --> (N, C, W)
pooled_features = tf.reduce_max(features, axis=1)
# holistic (N, C)
encoded = self.encoder(pooled_features, **kwargs)
if target is not None:
gt, seq_len = self.build_target(target)
seq_len = tf.cast(seq_len, tf.int32)
if kwargs.get("training", False) and target is None:
raise ValueError("Need to provide labels during training for teacher forcing")
decoded_features = _bf16_to_float32(
self.decoder(features, encoded, gt=None if target is None else gt, **kwargs)
)
out: Dict[str, tf.Tensor] = {}
if self.exportable:
out["logits"] = decoded_features
return out
if return_model_output:
out["out_map"] = decoded_features
if target is None or return_preds:
# Post-process boxes
out["preds"] = self.postprocessor(decoded_features)
if target is not None:
out["loss"] = self.compute_loss(decoded_features, gt, seq_len)
return out
class SARPostProcessor(RecognitionPostProcessor):
"""Post processor for SAR architectures
Args:
----
vocab: string containing the ordered sequence of supported characters
"""
def __call__(
self,
logits: tf.Tensor,
) -> List[Tuple[str, float]]:
# compute pred with argmax for attention models
out_idxs = tf.math.argmax(logits, axis=2)
# N x L
probs = tf.gather(tf.nn.softmax(logits, axis=-1), out_idxs, axis=-1, batch_dims=2)
# Take the minimum confidence of the sequence
probs = tf.math.reduce_min(probs, axis=1)
# decode raw output of the model with tf_label_to_idx
out_idxs = tf.cast(out_idxs, dtype="int32")
embedding = tf.constant(self._embedding, dtype=tf.string)
decoded_strings_pred = tf.strings.reduce_join(inputs=tf.nn.embedding_lookup(embedding, out_idxs), axis=-1)
decoded_strings_pred = tf.strings.split(decoded_strings_pred, "<eos>")
decoded_strings_pred = tf.sparse.to_dense(decoded_strings_pred.to_sparse(), default_value="not valid")[:, 0]
word_values = [word.decode() for word in decoded_strings_pred.numpy().tolist()]
return list(zip(word_values, probs.numpy().clip(0, 1).tolist()))
def _sar(
arch: str,
pretrained: bool,
backbone_fn,
pretrained_backbone: bool = True,
input_shape: Optional[Tuple[int, int, int]] = None,
**kwargs: Any,
) -> SAR:
pretrained_backbone = pretrained_backbone and not pretrained
# Patch the config
_cfg = deepcopy(default_cfgs[arch])
_cfg["input_shape"] = input_shape or _cfg["input_shape"]
_cfg["vocab"] = kwargs.get("vocab", _cfg["vocab"])
# Feature extractor
feat_extractor = backbone_fn(
pretrained=pretrained_backbone,
input_shape=_cfg["input_shape"],
include_top=False,
)
kwargs["vocab"] = _cfg["vocab"]
# Build the model
model = SAR(feat_extractor, cfg=_cfg, **kwargs)
_build_model(model)
# Load pretrained parameters
if pretrained:
# The given vocab differs from the pretrained model => skip the mismatching layers for fine tuning
load_pretrained_params(
model, default_cfgs[arch]["url"], skip_mismatch=kwargs["vocab"] != default_cfgs[arch]["vocab"]
)
return model
[docs]
def sar_resnet31(pretrained: bool = False, **kwargs: Any) -> SAR:
"""SAR with a resnet-31 feature extractor as described in `"Show, Attend and Read:A Simple and Strong
Baseline for Irregular Text Recognition" <https://arxiv.org/pdf/1811.00751.pdf>`_.
>>> import tensorflow as tf
>>> from doctr.models import sar_resnet31
>>> model = sar_resnet31(pretrained=False)
>>> input_tensor = tf.random.uniform(shape=[1, 64, 256, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text recognition dataset
**kwargs: keyword arguments of the SAR architecture
Returns:
-------
text recognition architecture
"""
return _sar("sar_resnet31", pretrained, resnet31, **kwargs)