Source code for doctr.models.recognition.vitstr.tensorflow

# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple

import tensorflow as tf
from tensorflow.keras import Model, layers

from doctr.datasets import VOCABS

from ...classification import vit_b, vit_s
from ...utils.tensorflow import _bf16_to_float32, load_pretrained_params
from .base import _ViTSTR, _ViTSTRPostProcessor

__all__ = ["ViTSTR", "vitstr_small", "vitstr_base"]

default_cfgs: Dict[str, Dict[str, Any]] = {
    "vitstr_small": {
        "mean": (0.694, 0.695, 0.693),
        "std": (0.299, 0.296, 0.301),
        "input_shape": (32, 128, 3),
        "vocab": VOCABS["french"],
        "url": "https://doctr-static.mindee.com/models?id=v0.6.0/vitstr_small-358fab2e.zip&src=0",
    },
    "vitstr_base": {
        "mean": (0.694, 0.695, 0.693),
        "std": (0.299, 0.296, 0.301),
        "input_shape": (32, 128, 3),
        "vocab": VOCABS["french"],
        "url": "https://doctr-static.mindee.com/models?id=v0.6.0/vitstr_base-2889159a.zip&src=0",
    },
}


class ViTSTR(_ViTSTR, Model):
    """Implements a ViTSTR architecture as described in `"Vision Transformer for Fast and
    Efficient Scene Text Recognition" <https://arxiv.org/pdf/2105.08582.pdf>`_.

    Args:
    ----
        feature_extractor: the backbone serving as feature extractor
        vocab: vocabulary used for encoding
        embedding_units: number of embedding units
        max_length: maximum word length handled by the model
        dropout_prob: dropout probability for the encoder and decoder
        input_shape: input shape of the image
        exportable: onnx exportable returns only logits
        cfg: dictionary containing information about the model
    """

    _children_names: List[str] = ["feat_extractor", "postprocessor"]

    def __init__(
        self,
        feature_extractor,
        vocab: str,
        embedding_units: int,
        max_length: int = 32,
        dropout_prob: float = 0.0,
        input_shape: Tuple[int, int, int] = (32, 128, 3),  # different from paper
        exportable: bool = False,
        cfg: Optional[Dict[str, Any]] = None,
    ) -> None:
        super().__init__()
        self.vocab = vocab
        self.exportable = exportable
        self.cfg = cfg
        self.max_length = max_length + 2  # +2 for SOS and EOS

        self.feat_extractor = feature_extractor
        self.head = layers.Dense(len(self.vocab) + 1, name="head")  # +1 for EOS

        self.postprocessor = ViTSTRPostProcessor(vocab=self.vocab)

    @staticmethod
    def compute_loss(
        model_output: tf.Tensor,
        gt: tf.Tensor,
        seq_len: List[int],
    ) -> tf.Tensor:
        """Compute categorical cross-entropy loss for the model.
        Sequences are masked after the EOS character.

        Args:
        ----
            model_output: predicted logits of the model
            gt: the encoded tensor with gt labels
            seq_len: lengths of each gt word inside the batch

        Returns:
        -------
            The loss of the model on the batch
        """
        # Input length : number of steps
        input_len = tf.shape(model_output)[1]
        # Add one for additional <eos> token (sos disappear in shift!)
        seq_len = tf.cast(seq_len, tf.int32) + 1
        # One-hot gt labels
        oh_gt = tf.one_hot(gt, depth=model_output.shape[2])
        # Compute loss: don't forget to shift gt! Otherwise the model learns to output the gt[t-1]!
        # The "masked" first gt char is <sos>.
        cce = tf.nn.softmax_cross_entropy_with_logits(oh_gt[:, 1:, :], model_output)
        # Compute mask
        mask_values = tf.zeros_like(cce)
        mask_2d = tf.sequence_mask(seq_len, input_len)
        masked_loss = tf.where(mask_2d, cce, mask_values)
        ce_loss = tf.math.divide(tf.reduce_sum(masked_loss, axis=1), tf.cast(seq_len, model_output.dtype))

        return tf.expand_dims(ce_loss, axis=1)

    def call(
        self,
        x: tf.Tensor,
        target: Optional[List[str]] = None,
        return_model_output: bool = False,
        return_preds: bool = False,
        **kwargs: Any,
    ) -> Dict[str, Any]:
        features = self.feat_extractor(x, **kwargs)  # (batch_size, patches_seqlen, d_model)

        if target is not None:
            gt, seq_len = self.build_target(target)
            seq_len = tf.cast(seq_len, tf.int32)

        if kwargs.get("training", False) and target is None:
            raise ValueError("Need to provide labels during training")

        features = features[:, : self.max_length]  # (batch_size, max_length, d_model)
        B, N, E = features.shape
        features = tf.reshape(features, (B * N, E))
        logits = tf.reshape(
            self.head(features, **kwargs), (B, N, len(self.vocab) + 1)
        )  # (batch_size, max_length, vocab + 1)
        decoded_features = _bf16_to_float32(logits[:, 1:])  # remove cls_token

        out: Dict[str, tf.Tensor] = {}
        if self.exportable:
            out["logits"] = decoded_features
            return out

        if return_model_output:
            out["out_map"] = decoded_features

        if target is None or return_preds:
            # Post-process boxes
            out["preds"] = self.postprocessor(decoded_features)

        if target is not None:
            out["loss"] = self.compute_loss(decoded_features, gt, seq_len)

        return out


class ViTSTRPostProcessor(_ViTSTRPostProcessor):
    """Post processor for ViTSTR architecture

    Args:
    ----
        vocab: string containing the ordered sequence of supported characters
    """

    def __call__(
        self,
        logits: tf.Tensor,
    ) -> List[Tuple[str, float]]:
        # compute pred with argmax for attention models
        out_idxs = tf.math.argmax(logits, axis=2)
        preds_prob = tf.math.reduce_max(tf.nn.softmax(logits, axis=-1), axis=-1)

        # decode raw output of the model with tf_label_to_idx
        out_idxs = tf.cast(out_idxs, dtype="int32")
        embedding = tf.constant(self._embedding, dtype=tf.string)
        decoded_strings_pred = tf.strings.reduce_join(inputs=tf.nn.embedding_lookup(embedding, out_idxs), axis=-1)
        decoded_strings_pred = tf.strings.split(decoded_strings_pred, "<eos>")
        decoded_strings_pred = tf.sparse.to_dense(decoded_strings_pred.to_sparse(), default_value="not valid")[:, 0]
        word_values = [word.decode() for word in decoded_strings_pred.numpy().tolist()]

        # compute probabilties for each word up to the EOS token
        probs = [
            preds_prob[i, : len(word)].numpy().clip(0, 1).mean().item() if word else 0.0
            for i, word in enumerate(word_values)
        ]

        return list(zip(word_values, probs))


def _vitstr(
    arch: str,
    pretrained: bool,
    backbone_fn,
    input_shape: Optional[Tuple[int, int, int]] = None,
    **kwargs: Any,
) -> ViTSTR:
    # Patch the config
    _cfg = deepcopy(default_cfgs[arch])
    _cfg["input_shape"] = input_shape or _cfg["input_shape"]
    _cfg["vocab"] = kwargs.get("vocab", _cfg["vocab"])
    patch_size = kwargs.get("patch_size", (4, 8))

    kwargs["vocab"] = _cfg["vocab"]

    # Feature extractor
    feat_extractor = backbone_fn(
        # NOTE: we don't use a pretrained backbone for non-rectangular patches to avoid the pos embed mismatch
        pretrained=False,
        input_shape=_cfg["input_shape"],
        patch_size=patch_size,
        include_top=False,
    )

    kwargs.pop("patch_size", None)
    kwargs.pop("pretrained_backbone", None)

    # Build the model
    model = ViTSTR(feat_extractor, cfg=_cfg, **kwargs)
    # Load pretrained parameters
    if pretrained:
        load_pretrained_params(model, default_cfgs[arch]["url"])

    return model


[docs] def vitstr_small(pretrained: bool = False, **kwargs: Any) -> ViTSTR: """ViTSTR-Small as described in `"Vision Transformer for Fast and Efficient Scene Text Recognition" <https://arxiv.org/pdf/2105.08582.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import vitstr_small >>> model = vitstr_small(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained (bool): If True, returns a model pre-trained on our text recognition dataset **kwargs: keyword arguments of the ViTSTR architecture Returns: ------- text recognition architecture """ return _vitstr( "vitstr_small", pretrained, vit_s, embedding_units=384, patch_size=(4, 8), **kwargs, )
[docs] def vitstr_base(pretrained: bool = False, **kwargs: Any) -> ViTSTR: """ViTSTR-Base as described in `"Vision Transformer for Fast and Efficient Scene Text Recognition" <https://arxiv.org/pdf/2105.08582.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import vitstr_base >>> model = vitstr_base(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained (bool): If True, returns a model pre-trained on our text recognition dataset **kwargs: keyword arguments of the ViTSTR architecture Returns: ------- text recognition architecture """ return _vitstr( "vitstr_base", pretrained, vit_b, embedding_units=768, patch_size=(4, 8), **kwargs, )