Source code for doctr.transforms.modules.tensorflow

# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

import random
from typing import Any, Callable, Iterable, List, Optional, Tuple, Union

import numpy as np
import tensorflow as tf

from doctr.utils.repr import NestedObject

from ..functional.tensorflow import _gaussian_filter, random_shadow

__all__ = [
    "Compose",
    "Resize",
    "Normalize",
    "LambdaTransformation",
    "ToGray",
    "RandomBrightness",
    "RandomContrast",
    "RandomSaturation",
    "RandomHue",
    "RandomGamma",
    "RandomJpegQuality",
    "GaussianBlur",
    "ChannelShuffle",
    "GaussianNoise",
    "RandomHorizontalFlip",
    "RandomShadow",
    "RandomResize",
]


[docs] class Compose(NestedObject): """Implements a wrapper that will apply transformations sequentially >>> import tensorflow as tf >>> from doctr.transforms import Compose, Resize >>> transfos = Compose([Resize((32, 32))]) >>> out = transfos(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) Args: ---- transforms: list of transformation modules """ _children_names: List[str] = ["transforms"] def __init__(self, transforms: List[Callable[[Any], Any]]) -> None: self.transforms = transforms def __call__(self, x: Any) -> Any: for t in self.transforms: x = t(x) return x
[docs] class Resize(NestedObject): """Resizes a tensor to a target size >>> import tensorflow as tf >>> from doctr.transforms import Resize >>> transfo = Resize((32, 32)) >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) Args: ---- output_size: expected output size method: interpolation method preserve_aspect_ratio: if `True`, preserve aspect ratio and pad the rest with zeros symmetric_pad: if `True` while preserving aspect ratio, the padding will be done symmetrically """ def __init__( self, output_size: Union[int, Tuple[int, int]], method: str = "bilinear", preserve_aspect_ratio: bool = False, symmetric_pad: bool = False, ) -> None: self.output_size = output_size self.method = method self.preserve_aspect_ratio = preserve_aspect_ratio self.symmetric_pad = symmetric_pad self.antialias = True if isinstance(self.output_size, int): self.wanted_size = (self.output_size, self.output_size) elif isinstance(self.output_size, (tuple, list)): self.wanted_size = self.output_size else: raise AssertionError("Output size should be either a list, a tuple or an int") def extra_repr(self) -> str: _repr = f"output_size={self.output_size}, method='{self.method}'" if self.preserve_aspect_ratio: _repr += f", preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}" return _repr def __call__( self, img: tf.Tensor, target: Optional[np.ndarray] = None, ) -> Union[tf.Tensor, Tuple[tf.Tensor, np.ndarray]]: input_dtype = img.dtype img = tf.image.resize(img, self.wanted_size, self.method, self.preserve_aspect_ratio, self.antialias) # It will produce an un-padded resized image, with a side shorter than wanted if we preserve aspect ratio raw_shape = img.shape[:2] if self.preserve_aspect_ratio: if isinstance(self.output_size, (tuple, list)): # In that case we need to pad because we want to enforce both width and height if not self.symmetric_pad: offset = (0, 0) elif self.output_size[0] == img.shape[0]: offset = (0, int((self.output_size[1] - img.shape[1]) / 2)) else: offset = (int((self.output_size[0] - img.shape[0]) / 2), 0) img = tf.image.pad_to_bounding_box(img, *offset, *self.output_size) # In case boxes are provided, resize boxes if needed (for detection task if preserve aspect ratio) if target is not None: if self.preserve_aspect_ratio: # Get absolute coords if target.shape[1:] == (4,): if isinstance(self.output_size, (tuple, list)) and self.symmetric_pad: if np.max(target) <= 1: offset = offset[0] / img.shape[0], offset[1] / img.shape[1] target[:, [0, 2]] = offset[1] + target[:, [0, 2]] * raw_shape[1] / img.shape[1] target[:, [1, 3]] = offset[0] + target[:, [1, 3]] * raw_shape[0] / img.shape[0] else: target[:, [0, 2]] *= raw_shape[1] / img.shape[1] target[:, [1, 3]] *= raw_shape[0] / img.shape[0] elif target.shape[1:] == (4, 2): if isinstance(self.output_size, (tuple, list)) and self.symmetric_pad: if np.max(target) <= 1: offset = offset[0] / img.shape[0], offset[1] / img.shape[1] target[..., 0] = offset[1] + target[..., 0] * raw_shape[1] / img.shape[1] target[..., 1] = offset[0] + target[..., 1] * raw_shape[0] / img.shape[0] else: target[..., 0] *= raw_shape[1] / img.shape[1] target[..., 1] *= raw_shape[0] / img.shape[0] else: raise AssertionError return tf.cast(img, dtype=input_dtype), target return tf.cast(img, dtype=input_dtype)
[docs] class Normalize(NestedObject): """Normalize a tensor to a Gaussian distribution for each channel >>> import tensorflow as tf >>> from doctr.transforms import Normalize >>> transfo = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) Args: ---- mean: average value per channel std: standard deviation per channel """ def __init__(self, mean: Tuple[float, float, float], std: Tuple[float, float, float]) -> None: self.mean = tf.constant(mean) self.std = tf.constant(std) def extra_repr(self) -> str: return f"mean={self.mean.numpy().tolist()}, std={self.std.numpy().tolist()}" def __call__(self, img: tf.Tensor) -> tf.Tensor: img -= tf.cast(self.mean, dtype=img.dtype) img /= tf.cast(self.std, dtype=img.dtype) return img
[docs] class LambdaTransformation(NestedObject): """Normalize a tensor to a Gaussian distribution for each channel >>> import tensorflow as tf >>> from doctr.transforms import LambdaTransformation >>> transfo = LambdaTransformation(lambda x: x/ 255.) >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) Args: ---- fn: the function to be applied to the input tensor """ def __init__(self, fn: Callable[[tf.Tensor], tf.Tensor]) -> None: self.fn = fn def __call__(self, img: tf.Tensor) -> tf.Tensor: return self.fn(img)
[docs] class ToGray(NestedObject): """Convert a RGB tensor (batch of images or image) to a 3-channels grayscale tensor >>> import tensorflow as tf >>> from doctr.transforms import ToGray >>> transfo = ToGray() >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) """ def __init__(self, num_output_channels: int = 1): self.num_output_channels = num_output_channels def __call__(self, img: tf.Tensor) -> tf.Tensor: img = tf.image.rgb_to_grayscale(img) return img if self.num_output_channels == 1 else tf.repeat(img, self.num_output_channels, axis=-1)
[docs] class RandomBrightness(NestedObject): """Randomly adjust brightness of a tensor (batch of images or image) by adding a delta to all pixels >>> import tensorflow as tf >>> from doctr.transforms import RandomBrightness >>> transfo = RandomBrightness() >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) Args: ---- max_delta: offset to add to each pixel is randomly picked in [-max_delta, max_delta] p: probability to apply transformation """ def __init__(self, max_delta: float = 0.3) -> None: self.max_delta = max_delta def extra_repr(self) -> str: return f"max_delta={self.max_delta}" def __call__(self, img: tf.Tensor) -> tf.Tensor: return tf.image.random_brightness(img, max_delta=self.max_delta)
[docs] class RandomContrast(NestedObject): """Randomly adjust contrast of a tensor (batch of images or image) by adjusting each pixel: (img - mean) * contrast_factor + mean. >>> import tensorflow as tf >>> from doctr.transforms import RandomContrast >>> transfo = RandomContrast() >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) Args: ---- delta: multiplicative factor is picked in [1-delta, 1+delta] (reduce contrast if factor<1) """ def __init__(self, delta: float = 0.3) -> None: self.delta = delta def extra_repr(self) -> str: return f"delta={self.delta}" def __call__(self, img: tf.Tensor) -> tf.Tensor: return tf.image.random_contrast(img, lower=1 - self.delta, upper=1 / (1 - self.delta))
[docs] class RandomSaturation(NestedObject): """Randomly adjust saturation of a tensor (batch of images or image) by converting to HSV and increasing saturation by a factor. >>> import tensorflow as tf >>> from doctr.transforms import RandomSaturation >>> transfo = RandomSaturation() >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) Args: ---- delta: multiplicative factor is picked in [1-delta, 1+delta] (reduce saturation if factor<1) """ def __init__(self, delta: float = 0.5) -> None: self.delta = delta def extra_repr(self) -> str: return f"delta={self.delta}" def __call__(self, img: tf.Tensor) -> tf.Tensor: return tf.image.random_saturation(img, lower=1 - self.delta, upper=1 + self.delta)
[docs] class RandomHue(NestedObject): """Randomly adjust hue of a tensor (batch of images or image) by converting to HSV and adding a delta >>> import tensorflow as tf >>> from doctr.transforms import RandomHue >>> transfo = RandomHue() >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) Args: ---- max_delta: offset to add to each pixel is randomly picked in [-max_delta, max_delta] """ def __init__(self, max_delta: float = 0.3) -> None: self.max_delta = max_delta def extra_repr(self) -> str: return f"max_delta={self.max_delta}" def __call__(self, img: tf.Tensor) -> tf.Tensor: return tf.image.random_hue(img, max_delta=self.max_delta)
[docs] class RandomGamma(NestedObject): """randomly performs gamma correction for a tensor (batch of images or image) >>> import tensorflow as tf >>> from doctr.transforms import RandomGamma >>> transfo = RandomGamma() >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) Args: ---- min_gamma: non-negative real number, lower bound for gamma param max_gamma: non-negative real number, upper bound for gamma min_gain: lower bound for constant multiplier max_gain: upper bound for constant multiplier """ def __init__( self, min_gamma: float = 0.5, max_gamma: float = 1.5, min_gain: float = 0.8, max_gain: float = 1.2, ) -> None: self.min_gamma = min_gamma self.max_gamma = max_gamma self.min_gain = min_gain self.max_gain = max_gain def extra_repr(self) -> str: return f"""gamma_range=({self.min_gamma}, {self.max_gamma}), gain_range=({self.min_gain}, {self.max_gain})""" def __call__(self, img: tf.Tensor) -> tf.Tensor: gamma = random.uniform(self.min_gamma, self.max_gamma) gain = random.uniform(self.min_gain, self.max_gain) return tf.image.adjust_gamma(img, gamma=gamma, gain=gain)
[docs] class RandomJpegQuality(NestedObject): """Randomly adjust jpeg quality of a 3 dimensional RGB image >>> import tensorflow as tf >>> from doctr.transforms import RandomJpegQuality >>> transfo = RandomJpegQuality() >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) Args: ---- min_quality: int between [0, 100] max_quality: int between [0, 100] """ def __init__(self, min_quality: int = 60, max_quality: int = 100) -> None: self.min_quality = min_quality self.max_quality = max_quality def extra_repr(self) -> str: return f"min_quality={self.min_quality}" def __call__(self, img: tf.Tensor) -> tf.Tensor: return tf.image.random_jpeg_quality(img, min_jpeg_quality=self.min_quality, max_jpeg_quality=self.max_quality)
[docs] class GaussianBlur(NestedObject): """Randomly adjust jpeg quality of a 3 dimensional RGB image >>> import tensorflow as tf >>> from doctr.transforms import GaussianBlur >>> transfo = GaussianBlur(3, (.1, 5)) >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) Args: ---- kernel_shape: size of the blurring kernel std: min and max value of the standard deviation """ def __init__(self, kernel_shape: Union[int, Iterable[int]], std: Tuple[float, float]) -> None: self.kernel_shape = kernel_shape self.std = std def extra_repr(self) -> str: return f"kernel_shape={self.kernel_shape}, std={self.std}" @tf.function def __call__(self, img: tf.Tensor) -> tf.Tensor: return tf.squeeze( _gaussian_filter( img[tf.newaxis, ...], kernel_size=self.kernel_shape, sigma=random.uniform(self.std[0], self.std[1]), mode="REFLECT", ), axis=0, )
[docs] class ChannelShuffle(NestedObject): """Randomly shuffle channel order of a given image""" def __init__(self): pass def __call__(self, img: tf.Tensor) -> tf.Tensor: return tf.transpose(tf.random.shuffle(tf.transpose(img, perm=[2, 0, 1])), perm=[1, 2, 0])
[docs] class GaussianNoise(NestedObject): """Adds Gaussian Noise to the input tensor >>> import tensorflow as tf >>> from doctr.transforms import GaussianNoise >>> transfo = GaussianNoise(0., 1.) >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) Args: ---- mean : mean of the gaussian distribution std : std of the gaussian distribution """ def __init__(self, mean: float = 0.0, std: float = 1.0) -> None: super().__init__() self.std = std self.mean = mean def __call__(self, x: tf.Tensor) -> tf.Tensor: # Reshape the distribution noise = self.mean + 2 * self.std * tf.random.uniform(x.shape) - self.std if x.dtype == tf.uint8: return tf.cast( tf.clip_by_value(tf.math.round(tf.cast(x, dtype=tf.float32) + 255 * noise), 0, 255), dtype=tf.uint8 ) else: return tf.cast(tf.clip_by_value(x + noise, 0, 1), dtype=x.dtype) def extra_repr(self) -> str: return f"mean={self.mean}, std={self.std}"
[docs] class RandomHorizontalFlip(NestedObject): """Adds random horizontal flip to the input tensor/np.ndarray >>> import tensorflow as tf >>> from doctr.transforms import RandomHorizontalFlip >>> transfo = RandomHorizontalFlip(p=0.5) >>> image = tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1) >>> target = np.array([[0.1, 0.1, 0.4, 0.5] ], dtype= np.float32) >>> out = transfo(image, target) Args: ---- p : probability of Horizontal Flip """ def __init__(self, p: float) -> None: super().__init__() self.p = p def __call__(self, img: Union[tf.Tensor, np.ndarray], target: np.ndarray) -> Tuple[tf.Tensor, np.ndarray]: if np.random.rand(1) <= self.p: _img = tf.image.flip_left_right(img) _target = target.copy() # Changing the relative bbox coordinates if target.shape[1:] == (4,): _target[:, ::2] = 1 - target[:, [2, 0]] else: _target[..., 0] = 1 - target[..., 0] return _img, _target return img, target
[docs] class RandomShadow(NestedObject): """Adds random shade to the input image >>> import tensorflow as tf >>> from doctr.transforms import RandomShadow >>> transfo = RandomShadow(0., 1.) >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) Args: ---- opacity_range : minimum and maximum opacity of the shade """ def __init__(self, opacity_range: Optional[Tuple[float, float]] = None) -> None: super().__init__() self.opacity_range = opacity_range if isinstance(opacity_range, tuple) else (0.2, 0.8) def __call__(self, x: tf.Tensor) -> tf.Tensor: # Reshape the distribution if x.dtype == tf.uint8: return tf.cast( tf.clip_by_value( tf.math.round(255 * random_shadow(tf.cast(x, dtype=tf.float32) / 255, self.opacity_range)), 0, 255, ), dtype=tf.uint8, ) else: return tf.clip_by_value(random_shadow(x, self.opacity_range), 0, 1) def extra_repr(self) -> str: return f"opacity_range={self.opacity_range}"
[docs] class RandomResize(NestedObject): """Randomly resize the input image and align corresponding targets >>> import tensorflow as tf >>> from doctr.transforms import RandomResize >>> transfo = RandomResize((0.3, 0.9), preserve_aspect_ratio=True, symmetric_pad=True, p=0.5) >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) Args: ---- scale_range: range of the resizing factor for width and height (independently) preserve_aspect_ratio: whether to preserve the aspect ratio of the image, given a float value, the aspect ratio will be preserved with this probability symmetric_pad: whether to symmetrically pad the image, given a float value, the symmetric padding will be applied with this probability p: probability to apply the transformation """ def __init__( self, scale_range: Tuple[float, float] = (0.3, 0.9), preserve_aspect_ratio: Union[bool, float] = False, symmetric_pad: Union[bool, float] = False, p: float = 0.5, ): super().__init__() self.scale_range = scale_range self.preserve_aspect_ratio = preserve_aspect_ratio self.symmetric_pad = symmetric_pad self.p = p self._resize = Resize def __call__(self, img: tf.Tensor, target: np.ndarray) -> Tuple[tf.Tensor, np.ndarray]: if np.random.rand(1) <= self.p: scale_h = random.uniform(*self.scale_range) scale_w = random.uniform(*self.scale_range) new_size = (int(img.shape[-3] * scale_h), int(img.shape[-2] * scale_w)) _img, _target = self._resize( new_size, preserve_aspect_ratio=self.preserve_aspect_ratio if isinstance(self.preserve_aspect_ratio, bool) else bool(np.random.rand(1) <= self.symmetric_pad), symmetric_pad=self.symmetric_pad if isinstance(self.symmetric_pad, bool) else bool(np.random.rand(1) <= self.symmetric_pad), )(img, target) return _img, _target return img, target def extra_repr(self) -> str: return f"scale_range={self.scale_range}, preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}, p={self.p}" # noqa: E501