# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
import colorsys
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple, Union
import cv2
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.figure import Figure
from .common_types import BoundingBox, Polygon4P
__all__ = ["visualize_page", "visualize_kie_page", "draw_boxes"]
def rect_patch(
geometry: BoundingBox,
page_dimensions: Tuple[int, int],
label: Optional[str] = None,
color: Tuple[float, float, float] = (0, 0, 0),
alpha: float = 0.3,
linewidth: int = 2,
fill: bool = True,
preserve_aspect_ratio: bool = False,
) -> patches.Rectangle:
"""Create a matplotlib rectangular patch for the element
Args:
----
geometry: bounding box of the element
page_dimensions: dimensions of the Page in format (height, width)
label: label to display when hovered
color: color to draw box
alpha: opacity parameter to fill the boxes, 0 = transparent
linewidth: line width
fill: whether the patch should be filled
preserve_aspect_ratio: pass True if you passed True to the predictor
Returns:
-------
a rectangular Patch
"""
if len(geometry) != 2 or any(not isinstance(elt, tuple) or len(elt) != 2 for elt in geometry):
raise ValueError("invalid geometry format")
# Unpack
height, width = page_dimensions
(xmin, ymin), (xmax, ymax) = geometry
# Switch to absolute coords
if preserve_aspect_ratio:
width = height = max(height, width)
xmin, w = xmin * width, (xmax - xmin) * width
ymin, h = ymin * height, (ymax - ymin) * height
return patches.Rectangle(
(xmin, ymin),
w,
h,
fill=fill,
linewidth=linewidth,
edgecolor=(*color, alpha),
facecolor=(*color, alpha),
label=label,
)
def polygon_patch(
geometry: np.ndarray,
page_dimensions: Tuple[int, int],
label: Optional[str] = None,
color: Tuple[float, float, float] = (0, 0, 0),
alpha: float = 0.3,
linewidth: int = 2,
fill: bool = True,
preserve_aspect_ratio: bool = False,
) -> patches.Polygon:
"""Create a matplotlib polygon patch for the element
Args:
----
geometry: bounding box of the element
page_dimensions: dimensions of the Page in format (height, width)
label: label to display when hovered
color: color to draw box
alpha: opacity parameter to fill the boxes, 0 = transparent
linewidth: line width
fill: whether the patch should be filled
preserve_aspect_ratio: pass True if you passed True to the predictor
Returns:
-------
a polygon Patch
"""
if not geometry.shape == (4, 2):
raise ValueError("invalid geometry format")
# Unpack
height, width = page_dimensions
geometry[:, 0] = geometry[:, 0] * (max(width, height) if preserve_aspect_ratio else width)
geometry[:, 1] = geometry[:, 1] * (max(width, height) if preserve_aspect_ratio else height)
return patches.Polygon(
geometry,
fill=fill,
linewidth=linewidth,
edgecolor=(*color, alpha),
facecolor=(*color, alpha),
label=label,
)
def create_obj_patch(
geometry: Union[BoundingBox, Polygon4P, np.ndarray],
page_dimensions: Tuple[int, int],
**kwargs: Any,
) -> patches.Patch:
"""Create a matplotlib patch for the element
Args:
----
geometry: bounding box (straight or rotated) of the element
page_dimensions: dimensions of the page in format (height, width)
**kwargs: keyword arguments for the patch
Returns:
-------
a matplotlib Patch
"""
if isinstance(geometry, tuple):
if len(geometry) == 2: # straight word BB (2 pts)
return rect_patch(geometry, page_dimensions, **kwargs)
elif len(geometry) == 4: # rotated word BB (4 pts)
return polygon_patch(np.asarray(geometry), page_dimensions, **kwargs)
elif isinstance(geometry, np.ndarray) and geometry.shape == (4, 2): # rotated line
return polygon_patch(geometry, page_dimensions, **kwargs)
raise ValueError("invalid geometry format")
def get_colors(num_colors: int) -> List[Tuple[float, float, float]]:
"""Generate num_colors color for matplotlib
Args:
----
num_colors: number of colors to generate
Returns:
-------
colors: list of generated colors
"""
colors = []
for i in np.arange(0.0, 360.0, 360.0 / num_colors):
hue = i / 360.0
lightness = (50 + np.random.rand() * 10) / 100.0
saturation = (90 + np.random.rand() * 10) / 100.0
colors.append(colorsys.hls_to_rgb(hue, lightness, saturation))
return colors
[docs]
def visualize_page(
page: Dict[str, Any],
image: np.ndarray,
words_only: bool = True,
display_artefacts: bool = True,
scale: float = 10,
interactive: bool = True,
add_labels: bool = True,
**kwargs: Any,
) -> Figure:
"""Visualize a full page with predicted blocks, lines and words
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from doctr.utils.visualization import visualize_page
>>> from doctr.models import ocr_db_crnn
>>> model = ocr_db_crnn(pretrained=True)
>>> input_page = (255 * np.random.rand(600, 800, 3)).astype(np.uint8)
>>> out = model([[input_page]])
>>> visualize_page(out[0].pages[0].export(), input_page)
>>> plt.show()
Args:
----
page: the exported Page of a Document
image: np array of the page, needs to have the same shape than page['dimensions']
words_only: whether only words should be displayed
display_artefacts: whether artefacts should be displayed
scale: figsize of the largest windows side
interactive: whether the plot should be interactive
add_labels: for static plot, adds text labels on top of bounding box
**kwargs: keyword arguments for the polygon patch
Returns:
-------
the matplotlib figure
"""
# Get proper scale and aspect ratio
h, w = image.shape[:2]
size = (scale * w / h, scale) if h > w else (scale, h / w * scale)
fig, ax = plt.subplots(figsize=size)
# Display the image
ax.imshow(image)
# hide both axis
ax.axis("off")
if interactive:
artists: List[patches.Patch] = [] # instantiate an empty list of patches (to be drawn on the page)
for block in page["blocks"]:
if not words_only:
rect = create_obj_patch(
block["geometry"], page["dimensions"], label="block", color=(0, 1, 0), linewidth=1, **kwargs
)
# add patch on figure
ax.add_patch(rect)
if interactive:
# add patch to cursor's artists
artists.append(rect)
for line in block["lines"]:
if not words_only:
rect = create_obj_patch(
line["geometry"], page["dimensions"], label="line", color=(1, 0, 0), linewidth=1, **kwargs
)
ax.add_patch(rect)
if interactive:
artists.append(rect)
for word in line["words"]:
rect = create_obj_patch(
word["geometry"],
page["dimensions"],
label=f"{word['value']} (confidence: {word['confidence']:.2%})",
color=(0, 0, 1),
**kwargs,
)
ax.add_patch(rect)
if interactive:
artists.append(rect)
elif add_labels:
if len(word["geometry"]) == 5:
text_loc = (
int(page["dimensions"][1] * (word["geometry"][0] - word["geometry"][2] / 2)),
int(page["dimensions"][0] * (word["geometry"][1] - word["geometry"][3] / 2)),
)
else:
text_loc = (
int(page["dimensions"][1] * word["geometry"][0][0]),
int(page["dimensions"][0] * word["geometry"][0][1]),
)
if len(word["geometry"]) == 2:
# We draw only if boxes are in straight format
ax.text(
*text_loc,
word["value"],
size=10,
alpha=0.5,
color=(0, 0, 1),
)
if display_artefacts:
for artefact in block["artefacts"]:
rect = create_obj_patch(
artefact["geometry"],
page["dimensions"],
label="artefact",
color=(0.5, 0.5, 0.5),
linewidth=1,
**kwargs,
)
ax.add_patch(rect)
if interactive:
artists.append(rect)
if interactive:
import mplcursors
# Create mlp Cursor to hover patches in artists
mplcursors.Cursor(artists, hover=2).connect("add", lambda sel: sel.annotation.set_text(sel.artist.get_label()))
fig.tight_layout(pad=0.0)
return fig
def visualize_kie_page(
page: Dict[str, Any],
image: np.ndarray,
words_only: bool = False,
display_artefacts: bool = True,
scale: float = 10,
interactive: bool = True,
add_labels: bool = True,
**kwargs: Any,
) -> Figure:
"""Visualize a full page with predicted blocks, lines and words
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from doctr.utils.visualization import visualize_page
>>> from doctr.models import ocr_db_crnn
>>> model = ocr_db_crnn(pretrained=True)
>>> input_page = (255 * np.random.rand(600, 800, 3)).astype(np.uint8)
>>> out = model([[input_page]])
>>> visualize_kie_page(out[0].pages[0].export(), input_page)
>>> plt.show()
Args:
----
page: the exported Page of a Document
image: np array of the page, needs to have the same shape than page['dimensions']
words_only: whether only words should be displayed
display_artefacts: whether artefacts should be displayed
scale: figsize of the largest windows side
interactive: whether the plot should be interactive
add_labels: for static plot, adds text labels on top of bounding box
**kwargs: keyword arguments for the polygon patch
Returns:
-------
the matplotlib figure
"""
# Get proper scale and aspect ratio
h, w = image.shape[:2]
size = (scale * w / h, scale) if h > w else (scale, h / w * scale)
fig, ax = plt.subplots(figsize=size)
# Display the image
ax.imshow(image)
# hide both axis
ax.axis("off")
if interactive:
artists: List[patches.Patch] = [] # instantiate an empty list of patches (to be drawn on the page)
colors = {k: color for color, k in zip(get_colors(len(page["predictions"])), page["predictions"])}
for key, value in page["predictions"].items():
for prediction in value:
if not words_only:
rect = create_obj_patch(
prediction["geometry"],
page["dimensions"],
label=f"{key} \n {prediction['value']} (confidence: {prediction['confidence']:.2%}",
color=colors[key],
linewidth=1,
**kwargs,
)
# add patch on figure
ax.add_patch(rect)
if interactive:
# add patch to cursor's artists
artists.append(rect)
if interactive:
import mplcursors
# Create mlp Cursor to hover patches in artists
mplcursors.Cursor(artists, hover=2).connect("add", lambda sel: sel.annotation.set_text(sel.artist.get_label()))
fig.tight_layout(pad=0.0)
return fig
def draw_boxes(boxes: np.ndarray, image: np.ndarray, color: Optional[Tuple[int, int, int]] = None, **kwargs) -> None:
"""Draw an array of relative straight boxes on an image
Args:
----
boxes: array of relative boxes, of shape (*, 4)
image: np array, float32 or uint8
color: color to use for bounding box edges
**kwargs: keyword arguments from `matplotlib.pyplot.plot`
"""
h, w = image.shape[:2]
# Convert boxes to absolute coords
_boxes = deepcopy(boxes)
_boxes[:, [0, 2]] *= w
_boxes[:, [1, 3]] *= h
_boxes = _boxes.astype(np.int32)
for box in _boxes.tolist():
xmin, ymin, xmax, ymax = box
image = cv2.rectangle(
image, (xmin, ymin), (xmax, ymax), color=color if isinstance(color, tuple) else (0, 0, 255), thickness=2
)
plt.imshow(image)
plt.plot(**kwargs)