Custom V1

Sample Code:

from mindee import Client, PredictResponse, product

# Init a new client
mindee_client = Client(api_key="my-api-key")

# Add your custom endpoint (document)
my_endpoint = mindee_client.create_endpoint(
    account_name="my-account",
    endpoint_name="my-endpoint",
)

# Load a file from disk
input_doc = mindee_client.source_from_path("/path/to/the/file.ext")

# Parse the file.
# The endpoint must be specified since it cannot be determined from the class.
result: PredictResponse = mindee_client.parse(
    product.CustomV1,
    input_doc,
    endpoint=my_endpoint
)

# Print a brief summary of the parsed data
print(result.document)

# # Iterate over all the fields in the document
# for field_name, field_values in result.document.inference.prediction.fields.items():
#     print(field_name, "=", field_values)
class CustomV1(raw_prediction)

Custom document (API Builder) v1 inference results.

Parameters:

raw_prediction (Dict[str, Any]) –

static get_endpoint_info(klass)

Retrives the endpoint information for an Inference.

Should never retrieve info for CustomV1, as a custom endpoint should be created to use CustomV1.

Parameters:

klass (Type[Inference]) – product subclass to access endpoint information.

Return type:

Dict[str, str]

endpoint_name: Optional[str] = 'custom'

Name of the endpoint (placeholder).

endpoint_version: Optional[str] = '1'

Version of the endpoint.

is_rotation_applied: Optional[bool]

Whether the document has had any rotation applied to it.

page_id: Optional[int]

Optional page id for page-level predictions.

pages: List[Page[CustomV1Page]]

Page-level prediction(s).

prediction: CustomV1Document

Document-level prediction.

product: Product

Name and version of a given product, as sent back by the API.

class CustomV1Document(raw_prediction)

Custom V1 document prediction results.

Parameters:

raw_prediction (Dict[str, Any]) –

columns_to_line_items(anchor_names, field_names, height_tolerance=0.01)

Order column fields into line items.

Parameters:
  • anchor_names (List[str]) – list of possible anchor fields.

  • field_names (List[str]) – list of all column fields.

  • height_tolerance (float, default: 0.01) – height tolerance to apply to lines.

Return type:

List[CustomLine]

classifications: Dict[str, ClassificationField]

Dictionary of all classifications in the document

fields: Dict[str, ListField]

Dictionary of all fields in the document

class CustomV1Page(raw_prediction, page_id)

Custom V1 page prediction results.

Parameters:
  • raw_prediction (Dict[str, Any]) –

  • page_id (Optional[int]) –

columns_to_line_items(anchor_names, field_names, height_tolerance=0.01)

Order column fields into line items.

Parameters:
  • anchor_names (List[str]) – list of possible anchor fields.

  • field_names (List[str]) – list of all column fields.

  • height_tolerance (float, default: 0.01) – height tolerance to apply to lines.

Return type:

List[CustomLine]

fields: Dict[str, ListField]

Dictionary of all fields in the document