Multi Receipts Detector V1
Sample Code:
from mindee import Client, PredictResponse, product
# Init a new client
mindee_client = Client(api_key="my-api-key")
# Load a file from disk
input_doc = mindee_client.source_from_path("/path/to/the/file.ext")
# Load a file from disk and parse it.
# The endpoint name must be specified since it cannot be determined from the class.
result: PredictResponse = mindee_client.parse(product.MultiReceiptsDetectorV1, input_doc)
# Print a summary of the API result
print(result.document)
# Print the document-level summary
# print(result.document.inference.prediction)
- class MultiReceiptsDetectorV1(raw_prediction)
Multi Receipts Detector API version 1 inference prediction.
- Parameters:
raw_prediction (Dict[str, Any]) –
- static get_endpoint_info(klass)
Retrives the endpoint information for an Inference.
Should never retrieve info for CustomV1, as a custom endpoint should be created to use CustomV1.
- Parameters:
klass (
Type
[Inference
]) – product subclass to access endpoint information.- Return type:
Dict
[str
,str
]
- endpoint_name: Optional[str] = 'multi_receipts_detector'
Name of the endpoint.
- endpoint_version: Optional[str] = '1'
Version of the endpoint.
- is_rotation_applied: Optional[bool]
Whether the document has had any rotation applied to it.
- page_id: Optional[int]
Optional page id for page-level predictions.
-
pages:
List
[Page
[MultiReceiptsDetectorV1Document
]] Page-level prediction(s).
-
prediction:
MultiReceiptsDetectorV1Document
Document-level prediction.
- product: Product
Name and version of a given product, as sent back by the API.
- class MultiReceiptsDetectorV1Document(raw_prediction, page_id=None)
Multi Receipts Detector API version 1.1 document data.
- Parameters:
raw_prediction (Dict[str, Any]) –
page_id (Optional[int]) –
-
receipts:
List
[PositionField
] Positions of the receipts on the document.