doctr.models¶
doctr.models.classification¶
- doctr.models.classification.vgg16_bn_r(pretrained: bool = False, **kwargs: Any) VGG [source]¶
VGG-16 architecture as described in “Very Deep Convolutional Networks for Large-Scale Image Recognition”, modified by adding batch normalization, rectangular pooling and a simpler classification head.
>>> import tensorflow as tf >>> from doctr.models import vgg16_bn_r >>> model = vgg16_bn_r(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on ImageNet
**kwargs – keyword arguments of the VGG architecture
- Returns:
VGG feature extractor
- doctr.models.classification.resnet18(pretrained: bool = False, **kwargs: Any) ResNet [source]¶
Resnet-18 architecture as described in “Deep Residual Learning for Image Recognition”,.
>>> import tensorflow as tf >>> from doctr.models import resnet18 >>> model = resnet18(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the ResNet architecture
- Returns:
A classification model
- doctr.models.classification.resnet34(pretrained: bool = False, **kwargs: Any) ResNet [source]¶
Resnet-34 architecture as described in “Deep Residual Learning for Image Recognition”,.
>>> import tensorflow as tf >>> from doctr.models import resnet34 >>> model = resnet34(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the ResNet architecture
- Returns:
A classification model
- doctr.models.classification.resnet50(pretrained: bool = False, **kwargs: Any) ResNet [source]¶
Resnet-50 architecture as described in “Deep Residual Learning for Image Recognition”,.
>>> import tensorflow as tf >>> from doctr.models import resnet50 >>> model = resnet50(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the ResNet architecture
- Returns:
A classification model
- doctr.models.classification.resnet31(pretrained: bool = False, **kwargs: Any) ResNet [source]¶
Resnet31 architecture with rectangular pooling windows as described in “Show, Attend and Read:A Simple and Strong Baseline for Irregular Text Recognition”,. Downsizing: (H, W) –> (H/8, W/4)
>>> import tensorflow as tf >>> from doctr.models import resnet31 >>> model = resnet31(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the ResNet architecture
- Returns:
A classification model
- doctr.models.classification.mobilenet_v3_small(pretrained: bool = False, **kwargs: Any) MobileNetV3 [source]¶
MobileNetV3-Small architecture as described in “Searching for MobileNetV3”,.
>>> import tensorflow as tf >>> from doctr.models import mobilenet_v3_small >>> model = mobilenet_v3_small(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the MobileNetV3 architecture
- Returns:
a keras.Model
- doctr.models.classification.mobilenet_v3_large(pretrained: bool = False, **kwargs: Any) MobileNetV3 [source]¶
MobileNetV3-Large architecture as described in “Searching for MobileNetV3”,.
>>> import tensorflow as tf >>> from doctr.models import mobilenet_v3_large >>> model = mobilenet_v3_large(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the MobileNetV3 architecture
- Returns:
a keras.Model
- doctr.models.classification.mobilenet_v3_small_r(pretrained: bool = False, **kwargs: Any) MobileNetV3 [source]¶
MobileNetV3-Small architecture as described in “Searching for MobileNetV3”,, with rectangular pooling.
>>> import tensorflow as tf >>> from doctr.models import mobilenet_v3_small_r >>> model = mobilenet_v3_small_r(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the MobileNetV3 architecture
- Returns:
a keras.Model
- doctr.models.classification.mobilenet_v3_large_r(pretrained: bool = False, **kwargs: Any) MobileNetV3 [source]¶
MobileNetV3-Large architecture as described in “Searching for MobileNetV3”,.
>>> import tensorflow as tf >>> from doctr.models import mobilenet_v3_large_r >>> model = mobilenet_v3_large_r(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the MobileNetV3 architecture
- Returns:
a keras.Model
- doctr.models.classification.mobilenet_v3_small_crop_orientation(pretrained: bool = False, **kwargs: Any) MobileNetV3 [source]¶
MobileNetV3-Small architecture as described in “Searching for MobileNetV3”,.
>>> import tensorflow as tf >>> from doctr.models import mobilenet_v3_small_crop_orientation >>> model = mobilenet_v3_small_crop_orientation(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the MobileNetV3 architecture
- Returns:
a keras.Model
- doctr.models.classification.mobilenet_v3_small_page_orientation(pretrained: bool = False, **kwargs: Any) MobileNetV3 [source]¶
MobileNetV3-Small architecture as described in “Searching for MobileNetV3”,.
>>> import tensorflow as tf >>> from doctr.models import mobilenet_v3_small_page_orientation >>> model = mobilenet_v3_small_page_orientation(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the MobileNetV3 architecture
- Returns:
a keras.Model
- doctr.models.classification.magc_resnet31(pretrained: bool = False, **kwargs: Any) ResNet [source]¶
Resnet31 architecture with Multi-Aspect Global Context Attention as described in “MASTER: Multi-Aspect Non-local Network for Scene Text Recognition”,.
>>> import tensorflow as tf >>> from doctr.models import magc_resnet31 >>> model = magc_resnet31(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 224, 224, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the ResNet architecture
- Returns:
A feature extractor model
- doctr.models.classification.vit_s(pretrained: bool = False, **kwargs: Any) VisionTransformer [source]¶
VisionTransformer-S architecture “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”,. Patches: (H, W) -> (H/8, W/8)
NOTE: unofficial config used in ViTSTR and ParSeq
>>> import tensorflow as tf >>> from doctr.models import vit_s >>> model = vit_s(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 32, 32, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the VisionTransformer architecture
- Returns:
A feature extractor model
- doctr.models.classification.vit_b(pretrained: bool = False, **kwargs: Any) VisionTransformer [source]¶
VisionTransformer-B architecture as described in “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”,. Patches: (H, W) -> (H/8, W/8)
>>> import tensorflow as tf >>> from doctr.models import vit_b >>> model = vit_b(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 32, 32, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the VisionTransformer architecture
- Returns:
A feature extractor model
- doctr.models.classification.textnet_tiny(pretrained: bool = False, **kwargs: Any) TextNet [source]¶
Implements TextNet architecture from “FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation”. Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_.
>>> import tensorflow as tf >>> from doctr.models import textnet_tiny >>> model = textnet_tiny(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 32, 32, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the TextNet architecture
- Returns:
A textnet tiny model
- doctr.models.classification.textnet_small(pretrained: bool = False, **kwargs: Any) TextNet [source]¶
Implements TextNet architecture from “FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation”. Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_.
>>> import tensorflow as tf >>> from doctr.models import textnet_small >>> model = textnet_small(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 32, 32, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the TextNet architecture
- Returns:
A TextNet small model
- doctr.models.classification.textnet_base(pretrained: bool = False, **kwargs: Any) TextNet [source]¶
Implements TextNet architecture from “FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation”. Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_.
>>> import tensorflow as tf >>> from doctr.models import textnet_base >>> model = textnet_base(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 32, 32, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained – boolean, True if model is pretrained
**kwargs – keyword arguments of the TextNet architecture
- Returns:
A TextNet base model
- doctr.models.classification.crop_orientation_predictor(arch: Any = 'mobilenet_v3_small_crop_orientation', pretrained: bool = False, batch_size: int = 128, **kwargs: Any) OrientationPredictor [source]¶
Crop orientation classification architecture.
>>> import numpy as np >>> from doctr.models import crop_orientation_predictor >>> model = crop_orientation_predictor(arch='mobilenet_v3_small_crop_orientation', pretrained=True) >>> input_crop = (255 * np.random.rand(256, 256, 3)).astype(np.uint8) >>> out = model([input_crop])
- Parameters:
arch – name of the architecture to use (e.g. ‘mobilenet_v3_small_crop_orientation’)
pretrained – If True, returns a model pre-trained on our recognition crops dataset
batch_size – number of samples the model processes in parallel
**kwargs – keyword arguments to be passed to the OrientationPredictor
- Returns:
OrientationPredictor
- doctr.models.classification.page_orientation_predictor(arch: Any = 'mobilenet_v3_small_page_orientation', pretrained: bool = False, batch_size: int = 4, **kwargs: Any) OrientationPredictor [source]¶
Page orientation classification architecture.
>>> import numpy as np >>> from doctr.models import page_orientation_predictor >>> model = page_orientation_predictor(arch='mobilenet_v3_small_page_orientation', pretrained=True) >>> input_page = (255 * np.random.rand(512, 512, 3)).astype(np.uint8) >>> out = model([input_page])
- Parameters:
arch – name of the architecture to use (e.g. ‘mobilenet_v3_small_page_orientation’)
pretrained – If True, returns a model pre-trained on our recognition crops dataset
batch_size – number of samples the model processes in parallel
**kwargs – keyword arguments to be passed to the OrientationPredictor
- Returns:
OrientationPredictor
doctr.models.detection¶
- doctr.models.detection.linknet_resnet18(pretrained: bool = False, **kwargs: Any) LinkNet [source]¶
LinkNet as described in “LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation”.
>>> import tensorflow as tf >>> from doctr.models import linknet_resnet18 >>> model = linknet_resnet18(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text detection dataset
**kwargs – keyword arguments of the LinkNet architecture
- Returns:
text detection architecture
- doctr.models.detection.linknet_resnet34(pretrained: bool = False, **kwargs: Any) LinkNet [source]¶
LinkNet as described in “LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation”.
>>> import tensorflow as tf >>> from doctr.models import linknet_resnet34 >>> model = linknet_resnet34(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text detection dataset
**kwargs – keyword arguments of the LinkNet architecture
- Returns:
text detection architecture
- doctr.models.detection.linknet_resnet50(pretrained: bool = False, **kwargs: Any) LinkNet [source]¶
LinkNet as described in “LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation”.
>>> import tensorflow as tf >>> from doctr.models import linknet_resnet50 >>> model = linknet_resnet50(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text detection dataset
**kwargs – keyword arguments of the LinkNet architecture
- Returns:
text detection architecture
- doctr.models.detection.db_resnet50(pretrained: bool = False, **kwargs: Any) DBNet [source]¶
DBNet as described in “Real-time Scene Text Detection with Differentiable Binarization”, using a ResNet-50 backbone.
>>> import tensorflow as tf >>> from doctr.models import db_resnet50 >>> model = db_resnet50(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text detection dataset
**kwargs – keyword arguments of the DBNet architecture
- Returns:
text detection architecture
- doctr.models.detection.db_mobilenet_v3_large(pretrained: bool = False, **kwargs: Any) DBNet [source]¶
DBNet as described in “Real-time Scene Text Detection with Differentiable Binarization”, using a mobilenet v3 large backbone.
>>> import tensorflow as tf >>> from doctr.models import db_mobilenet_v3_large >>> model = db_mobilenet_v3_large(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text detection dataset
**kwargs – keyword arguments of the DBNet architecture
- Returns:
text detection architecture
- doctr.models.detection.fast_tiny(pretrained: bool = False, **kwargs: Any) FAST [source]¶
FAST as described in “FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation”, using a tiny TextNet backbone.
>>> import tensorflow as tf >>> from doctr.models import fast_tiny >>> model = fast_tiny(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text detection dataset
**kwargs – keyword arguments of the DBNet architecture
- Returns:
text detection architecture
- doctr.models.detection.fast_small(pretrained: bool = False, **kwargs: Any) FAST [source]¶
FAST as described in “FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation”, using a small TextNet backbone.
>>> import tensorflow as tf >>> from doctr.models import fast_small >>> model = fast_small(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text detection dataset
**kwargs – keyword arguments of the DBNet architecture
- Returns:
text detection architecture
- doctr.models.detection.fast_base(pretrained: bool = False, **kwargs: Any) FAST [source]¶
FAST as described in “FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation”, using a base TextNet backbone.
>>> import tensorflow as tf >>> from doctr.models import fast_base >>> model = fast_base(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text detection dataset
**kwargs – keyword arguments of the DBNet architecture
- Returns:
text detection architecture
- doctr.models.detection.detection_predictor(arch: Any = 'fast_base', pretrained: bool = False, assume_straight_pages: bool = True, preserve_aspect_ratio: bool = True, symmetric_pad: bool = True, batch_size: int = 2, **kwargs: Any) DetectionPredictor [source]¶
Text detection architecture.
>>> import numpy as np >>> from doctr.models import detection_predictor >>> model = detection_predictor(arch='db_resnet50', pretrained=True) >>> input_page = (255 * np.random.rand(600, 800, 3)).astype(np.uint8) >>> out = model([input_page])
- Parameters:
arch – name of the architecture or model itself to use (e.g. ‘db_resnet50’)
pretrained – If True, returns a model pre-trained on our text detection dataset
assume_straight_pages – If True, fit straight boxes to the page
preserve_aspect_ratio – If True, pad the input document image to preserve the aspect ratio before running the detection model on it
symmetric_pad – if True, pad the image symmetrically instead of padding at the bottom-right
batch_size – number of samples the model processes in parallel
**kwargs – optional keyword arguments passed to the architecture
- Returns:
Detection predictor
doctr.models.recognition¶
- doctr.models.recognition.crnn_vgg16_bn(pretrained: bool = False, **kwargs: Any) CRNN [source]¶
CRNN with a VGG-16 backbone as described in “An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition”.
>>> import tensorflow as tf >>> from doctr.models import crnn_vgg16_bn >>> model = crnn_vgg16_bn(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text recognition dataset
**kwargs – keyword arguments of the CRNN architecture
- Returns:
text recognition architecture
- doctr.models.recognition.crnn_mobilenet_v3_small(pretrained: bool = False, **kwargs: Any) CRNN [source]¶
CRNN with a MobileNet V3 Small backbone as described in “An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition”.
>>> import tensorflow as tf >>> from doctr.models import crnn_mobilenet_v3_small >>> model = crnn_mobilenet_v3_small(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text recognition dataset
**kwargs – keyword arguments of the CRNN architecture
- Returns:
text recognition architecture
- doctr.models.recognition.crnn_mobilenet_v3_large(pretrained: bool = False, **kwargs: Any) CRNN [source]¶
CRNN with a MobileNet V3 Large backbone as described in “An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition”.
>>> import tensorflow as tf >>> from doctr.models import crnn_mobilenet_v3_large >>> model = crnn_mobilenet_v3_large(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text recognition dataset
**kwargs – keyword arguments of the CRNN architecture
- Returns:
text recognition architecture
- doctr.models.recognition.sar_resnet31(pretrained: bool = False, **kwargs: Any) SAR [source]¶
SAR with a resnet-31 feature extractor as described in “Show, Attend and Read:A Simple and Strong Baseline for Irregular Text Recognition”.
>>> import tensorflow as tf >>> from doctr.models import sar_resnet31 >>> model = sar_resnet31(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 64, 256, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text recognition dataset
**kwargs – keyword arguments of the SAR architecture
- Returns:
text recognition architecture
- doctr.models.recognition.master(pretrained: bool = False, **kwargs: Any) MASTER [source]¶
MASTER as described in paper: <https://arxiv.org/pdf/1910.02562.pdf>`_.
>>> import tensorflow as tf >>> from doctr.models import master >>> model = master(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text recognition dataset
**kwargs – keywoard arguments passed to the MASTER architecture
- Returns:
text recognition architecture
- doctr.models.recognition.vitstr_small(pretrained: bool = False, **kwargs: Any) ViTSTR [source]¶
ViTSTR-Small as described in “Vision Transformer for Fast and Efficient Scene Text Recognition”.
>>> import tensorflow as tf >>> from doctr.models import vitstr_small >>> model = vitstr_small(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text recognition dataset
**kwargs – keyword arguments of the ViTSTR architecture
- Returns:
text recognition architecture
- doctr.models.recognition.vitstr_base(pretrained: bool = False, **kwargs: Any) ViTSTR [source]¶
ViTSTR-Base as described in “Vision Transformer for Fast and Efficient Scene Text Recognition”.
>>> import tensorflow as tf >>> from doctr.models import vitstr_base >>> model = vitstr_base(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text recognition dataset
**kwargs – keyword arguments of the ViTSTR architecture
- Returns:
text recognition architecture
- doctr.models.recognition.parseq(pretrained: bool = False, **kwargs: Any) PARSeq [source]¶
PARSeq architecture from “Scene Text Recognition with Permuted Autoregressive Sequence Models”.
>>> import tensorflow as tf >>> from doctr.models import parseq >>> model = parseq(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor)
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on our text recognition dataset
**kwargs – keyword arguments of the PARSeq architecture
- Returns:
text recognition architecture
- doctr.models.recognition.recognition_predictor(arch: Any = 'crnn_vgg16_bn', pretrained: bool = False, symmetric_pad: bool = False, batch_size: int = 128, **kwargs: Any) RecognitionPredictor [source]¶
Text recognition architecture.
- Example::
>>> import numpy as np >>> from doctr.models import recognition_predictor >>> model = recognition_predictor(pretrained=True) >>> input_page = (255 * np.random.rand(32, 128, 3)).astype(np.uint8) >>> out = model([input_page])
- Parameters:
arch – name of the architecture or model itself to use (e.g. ‘crnn_vgg16_bn’)
pretrained – If True, returns a model pre-trained on our text recognition dataset
symmetric_pad – if True, pad the image symmetrically instead of padding at the bottom-right
batch_size – number of samples the model processes in parallel
**kwargs – optional parameters to be passed to the architecture
- Returns:
Recognition predictor
doctr.models.zoo¶
- doctr.models.ocr_predictor(det_arch: Any = 'fast_base', reco_arch: Any = 'crnn_vgg16_bn', pretrained: bool = False, pretrained_backbone: bool = True, assume_straight_pages: bool = True, preserve_aspect_ratio: bool = True, symmetric_pad: bool = True, export_as_straight_boxes: bool = False, detect_orientation: bool = False, straighten_pages: bool = False, detect_language: bool = False, **kwargs: Any) OCRPredictor [source]¶
End-to-end OCR architecture using one model for localization, and another for text recognition.
>>> import numpy as np >>> from doctr.models import ocr_predictor >>> model = ocr_predictor('db_resnet50', 'crnn_vgg16_bn', pretrained=True) >>> input_page = (255 * np.random.rand(600, 800, 3)).astype(np.uint8) >>> out = model([input_page])
- Parameters:
det_arch – name of the detection architecture or the model itself to use (e.g. ‘db_resnet50’, ‘db_mobilenet_v3_large’)
reco_arch – name of the recognition architecture or the model itself to use (e.g. ‘crnn_vgg16_bn’, ‘sar_resnet31’)
pretrained – If True, returns a model pre-trained on our OCR dataset
pretrained_backbone – If True, returns a model with a pretrained backbone
assume_straight_pages – if True, speeds up the inference by assuming you only pass straight pages without rotated textual elements.
preserve_aspect_ratio – If True, pad the input document image to preserve the aspect ratio before running the detection model on it.
symmetric_pad – if True, pad the image symmetrically instead of padding at the bottom-right.
export_as_straight_boxes – when assume_straight_pages is set to False, export final predictions (potentially rotated) as straight bounding boxes.
detect_orientation – if True, the estimated general page orientation will be added to the predictions for each page. Doing so will slightly deteriorate the overall latency.
straighten_pages – if True, estimates the page general orientation based on the segmentation map median line orientation. Then, rotates page before passing it again to the deep learning detection module. Doing so will improve performances for documents with page-uniform rotations.
detect_language – if True, the language prediction will be added to the predictions for each page. Doing so will slightly deteriorate the overall latency.
kwargs – keyword args of OCRPredictor
- Returns:
OCR predictor
- doctr.models.kie_predictor(det_arch: Any = 'fast_base', reco_arch: Any = 'crnn_vgg16_bn', pretrained: bool = False, pretrained_backbone: bool = True, assume_straight_pages: bool = True, preserve_aspect_ratio: bool = True, symmetric_pad: bool = True, export_as_straight_boxes: bool = False, detect_orientation: bool = False, straighten_pages: bool = False, detect_language: bool = False, **kwargs: Any) KIEPredictor [source]¶
End-to-end KIE architecture using one model for localization, and another for text recognition.
>>> import numpy as np >>> from doctr.models import ocr_predictor >>> model = ocr_predictor('db_resnet50', 'crnn_vgg16_bn', pretrained=True) >>> input_page = (255 * np.random.rand(600, 800, 3)).astype(np.uint8) >>> out = model([input_page])
- Parameters:
det_arch – name of the detection architecture or the model itself to use (e.g. ‘db_resnet50’, ‘db_mobilenet_v3_large’)
reco_arch – name of the recognition architecture or the model itself to use (e.g. ‘crnn_vgg16_bn’, ‘sar_resnet31’)
pretrained – If True, returns a model pre-trained on our OCR dataset
pretrained_backbone – If True, returns a model with a pretrained backbone
assume_straight_pages – if True, speeds up the inference by assuming you only pass straight pages without rotated textual elements.
preserve_aspect_ratio – If True, pad the input document image to preserve the aspect ratio before running the detection model on it.
symmetric_pad – if True, pad the image symmetrically instead of padding at the bottom-right.
export_as_straight_boxes – when assume_straight_pages is set to False, export final predictions (potentially rotated) as straight bounding boxes.
detect_orientation – if True, the estimated general page orientation will be added to the predictions for each page. Doing so will slightly deteriorate the overall latency.
straighten_pages – if True, estimates the page general orientation based on the segmentation map median line orientation. Then, rotates page before passing it again to the deep learning detection module. Doing so will improve performances for documents with page-uniform rotations.
detect_language – if True, the language prediction will be added to the predictions for each page. Doing so will slightly deteriorate the overall latency.
kwargs – keyword args of OCRPredictor
- Returns:
KIE predictor
doctr.models.factory¶
- doctr.models.factory.from_hub(repo_id: str, **kwargs: Any)[source]¶
Instantiate & load a pretrained model from HF hub.
>>> from doctr.models import from_hub >>> model = from_hub("mindee/fasterrcnn_mobilenet_v3_large_fpn")
- Parameters:
repo_id – HuggingFace model hub repo
kwargs – kwargs of hf_hub_download or snapshot_download
- Returns:
Model loaded with the checkpoint
- doctr.models.factory.push_to_hf_hub(model: Any, model_name: str, task: str, **kwargs) None [source]¶
Save model and its configuration on HF hub
>>> from doctr.models import login_to_hub, push_to_hf_hub >>> from doctr.models.recognition import crnn_mobilenet_v3_small >>> login_to_hub() >>> model = crnn_mobilenet_v3_small(pretrained=True) >>> push_to_hf_hub(model, 'my-model', 'recognition', arch='crnn_mobilenet_v3_small')
- Parameters:
model – TF or PyTorch model to be saved
model_name – name of the model which is also the repository name
task – task name
**kwargs – keyword arguments for push_to_hf_hub