Preparing your model for inference¶
A well-trained model is a good achievement but you might want to tune a few things to make it production-ready!
Model optimization¶
This section is meant to help you perform inference with optimized versions of your model.
Half-precision¶
NOTE: We support half-precision inference for PyTorch and TensorFlow models only on GPU devices.
Half-precision (or FP16) is a binary floating-point format that occupies 16 bits in computer memory.
Advantages:
Faster inference
Less memory usage
import tensorflow as tf
from tensorflow.keras import mixed_precision
mixed_precision.set_global_policy('mixed_float16')
predictor = ocr_predictor(reco_arch="crnn_mobilenet_v3_small", det_arch="linknet_resnet34", pretrained=True)
import torch
predictor = ocr_predictor(reco_arch="crnn_mobilenet_v3_small", det_arch="linknet_resnet34", pretrained=True).cuda().half()
res = predictor(doc)
Export to ONNX¶
ONNX (Open Neural Network Exchange) is an open and interoperable format for representing and exchanging machine learning models. It defines a common format for representing models, including the network structure, layer types, parameters, and metadata.
import tensorflow as tf
from doctr.models import vitstr_small
from doctr.models.utils import export_model_to_onnx
batch_size = 16
input_shape = (3, 32, 128)
model = vitstr_small(pretrained=True, exportable=True)
dummy_input = [tf.TensorSpec([batch_size, input_shape], tf.float32, name="input")]
model_path, output = export_model_to_onnx(model, model_name="vitstr.onnx", dummy_input=dummy_input)
import torch
from doctr.models import vitstr_small
from doctr.models.utils import export_model_to_onnx
batch_size = 16
input_shape = (32, 128, 3)
model = vitstr_small(pretrained=True, exportable=True)
dummy_input = torch.rand((batch_size, input_shape), dtype=torch.float32)
model_path = export_model_to_onnx(model, model_name="vitstr.onnx, dummy_input=dummy_input)
Using your ONNX exported model¶
To use your exported model, we have build a dedicated lightweight package called OnnxTR. The package doesn’t require PyTorch or TensorFlow to be installed - build on top of ONNXRuntime. It is simple and easy-to-use (with the same interface you know already from docTR), that allows you to perform inference with your exported model.
pip install onnxtr[cpu]
from onnxtr.io import DocumentFile
from onnxtr.models import ocr_predictor, parseq, linknet_resnet18
# Load your documents
single_img_doc = DocumentFile.from_images("path/to/your/img.jpg")
# Load your exported model/s
reco_model = parseq("path_to_custom_model.onnx", vocab="ABC")
det_model = linknet_resnet18("path_to_custom_model.onnx")
predictor = ocr_predictor(det_arch=det_model, reco_arch=reco_model)
# Or use any of the pre-trained models
predictor = ocr_predictor(det_arch="linknet_resnet18", reco_arch="parseq")
# Get your results
res = predictor(single_img_doc)