# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
import os
from typing import Any, Dict, List, Tuple, Union
import defusedxml.ElementTree as ET
import numpy as np
from tqdm import tqdm
from .datasets import VisionDataset
from .utils import convert_target_to_relative, crop_bboxes_from_image
__all__ = ["SVT"]
[docs]
class SVT(VisionDataset):
"""SVT dataset from `"The Street View Text Dataset - UCSD Computer Vision"
<http://vision.ucsd.edu/~kai/svt/>`_.
.. image:: https://doctr-static.mindee.com/models?id=v0.5.0/svt-grid.png&src=0
:align: center
>>> from doctr.datasets import SVT
>>> train_set = SVT(train=True, download=True)
>>> img, target = train_set[0]
Args:
----
train: whether the subset should be the training one
use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones)
recognition_task: whether the dataset should be used for recognition task
detection_task: whether the dataset should be used for detection task
**kwargs: keyword arguments from `VisionDataset`.
"""
URL = "http://vision.ucsd.edu/~kai/svt/svt.zip"
SHA256 = "63b3d55e6b6d1e036e2a844a20c034fe3af3c32e4d914d6e0c4a3cd43df3bebf"
def __init__(
self,
train: bool = True,
use_polygons: bool = False,
recognition_task: bool = False,
detection_task: bool = False,
**kwargs: Any,
) -> None:
super().__init__(
self.URL,
None,
self.SHA256,
True,
pre_transforms=convert_target_to_relative if not recognition_task else None,
**kwargs,
)
if recognition_task and detection_task:
raise ValueError(
"`recognition_task` and `detection_task` cannot be set to True simultaneously. "
+ "To get the whole dataset with boxes and labels leave both parameters to False."
)
self.train = train
self.data: List[Tuple[Union[str, np.ndarray], Union[str, Dict[str, Any], np.ndarray]]] = []
np_dtype = np.float32
# Load xml data
tmp_root = os.path.join(self.root, "svt1") if self.SHA256 else self.root
xml_tree = (
ET.parse(os.path.join(tmp_root, "train.xml"))
if self.train
else ET.parse(os.path.join(tmp_root, "test.xml"))
)
xml_root = xml_tree.getroot()
for image in tqdm(iterable=xml_root, desc="Unpacking SVT", total=len(xml_root)):
name, _, _, _resolution, rectangles = image
# File existence check
if not os.path.exists(os.path.join(tmp_root, name.text)):
raise FileNotFoundError(f"unable to locate {os.path.join(tmp_root, name.text)}")
if use_polygons:
# (x, y) coordinates of top left, top right, bottom right, bottom left corners
_boxes = [
[
[float(rect.attrib["x"]), float(rect.attrib["y"])],
[float(rect.attrib["x"]) + float(rect.attrib["width"]), float(rect.attrib["y"])],
[
float(rect.attrib["x"]) + float(rect.attrib["width"]),
float(rect.attrib["y"]) + float(rect.attrib["height"]),
],
[float(rect.attrib["x"]), float(rect.attrib["y"]) + float(rect.attrib["height"])],
]
for rect in rectangles
]
else:
# x_min, y_min, x_max, y_max
_boxes = [
[
float(rect.attrib["x"]), # type: ignore[list-item]
float(rect.attrib["y"]), # type: ignore[list-item]
float(rect.attrib["x"]) + float(rect.attrib["width"]), # type: ignore[list-item]
float(rect.attrib["y"]) + float(rect.attrib["height"]), # type: ignore[list-item]
]
for rect in rectangles
]
boxes: np.ndarray = np.asarray(_boxes, dtype=np_dtype)
# Get the labels
labels = [lab.text for rect in rectangles for lab in rect]
if recognition_task:
crops = crop_bboxes_from_image(img_path=os.path.join(tmp_root, name.text), geoms=boxes)
for crop, label in zip(crops, labels):
if crop.shape[0] > 0 and crop.shape[1] > 0 and len(label) > 0:
self.data.append((crop, label))
elif detection_task:
self.data.append((name.text, boxes))
else:
self.data.append((name.text, dict(boxes=boxes, labels=labels)))
self.root = tmp_root
def extra_repr(self) -> str:
return f"train={self.train}"