# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
import os
from typing import Any
import defusedxml.ElementTree as ET
import numpy as np
from tqdm import tqdm
from .datasets import VisionDataset
from .utils import convert_target_to_relative, crop_bboxes_from_image
__all__ = ["SVT"]
[docs]
class SVT(VisionDataset):
"""SVT dataset from `"The Street View Text Dataset - UCSD Computer Vision"
<http://vision.ucsd.edu/~kai/svt/>`_.
.. image:: https://doctr-static.mindee.com/models?id=v0.5.0/svt-grid.png&src=0
:align: center
>>> from doctr.datasets import SVT
>>> train_set = SVT(train=True, download=True)
>>> img, target = train_set[0]
Args:
train: whether the subset should be the training one
use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones)
recognition_task: whether the dataset should be used for recognition task
detection_task: whether the dataset should be used for detection task
**kwargs: keyword arguments from `VisionDataset`.
"""
URL = "http://vision.ucsd.edu/~kai/svt/svt.zip"
SHA256 = "63b3d55e6b6d1e036e2a844a20c034fe3af3c32e4d914d6e0c4a3cd43df3bebf"
def __init__(
self,
train: bool = True,
use_polygons: bool = False,
recognition_task: bool = False,
detection_task: bool = False,
**kwargs: Any,
) -> None:
super().__init__(
self.URL,
None,
self.SHA256,
True,
pre_transforms=convert_target_to_relative if not recognition_task else None,
**kwargs,
)
if recognition_task and detection_task:
raise ValueError(
"`recognition_task` and `detection_task` cannot be set to True simultaneously. "
+ "To get the whole dataset with boxes and labels leave both parameters to False."
)
self.train = train
self.data: list[tuple[str | np.ndarray, str | dict[str, Any] | np.ndarray]] = []
np_dtype = np.float32
# Load xml data
tmp_root = os.path.join(self.root, "svt1") if self.SHA256 else self.root
xml_tree = (
ET.parse(os.path.join(tmp_root, "train.xml"))
if self.train
else ET.parse(os.path.join(tmp_root, "test.xml"))
)
xml_root = xml_tree.getroot()
for image in tqdm(iterable=xml_root, desc="Unpacking SVT", total=len(xml_root)):
name, _, _, _resolution, rectangles = image
# File existence check
if not os.path.exists(os.path.join(tmp_root, name.text)):
raise FileNotFoundError(f"unable to locate {os.path.join(tmp_root, name.text)}")
if use_polygons:
# (x, y) coordinates of top left, top right, bottom right, bottom left corners
_boxes = [
[
[float(rect.attrib["x"]), float(rect.attrib["y"])],
[float(rect.attrib["x"]) + float(rect.attrib["width"]), float(rect.attrib["y"])],
[
float(rect.attrib["x"]) + float(rect.attrib["width"]),
float(rect.attrib["y"]) + float(rect.attrib["height"]),
],
[float(rect.attrib["x"]), float(rect.attrib["y"]) + float(rect.attrib["height"])],
]
for rect in rectangles
]
else:
# x_min, y_min, x_max, y_max
_boxes = [
[
float(rect.attrib["x"]), # type: ignore[list-item]
float(rect.attrib["y"]), # type: ignore[list-item]
float(rect.attrib["x"]) + float(rect.attrib["width"]), # type: ignore[list-item]
float(rect.attrib["y"]) + float(rect.attrib["height"]), # type: ignore[list-item]
]
for rect in rectangles
]
boxes: np.ndarray = np.asarray(_boxes, dtype=np_dtype)
# Get the labels
labels = [lab.text for rect in rectangles for lab in rect]
if recognition_task:
crops = crop_bboxes_from_image(img_path=os.path.join(tmp_root, name.text), geoms=boxes)
for crop, label in zip(crops, labels):
if crop.shape[0] > 0 and crop.shape[1] > 0 and len(label) > 0:
self.data.append((crop, label))
elif detection_task:
self.data.append((name.text, boxes))
else:
self.data.append((name.text, dict(boxes=boxes, labels=labels)))
self.root = tmp_root
def extra_repr(self) -> str:
return f"train={self.train}"