# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from typing import Any
from defusedxml import defuse_stdlib
defuse_stdlib()
from xml.etree import ElementTree as ET
from xml.etree.ElementTree import Element as ETElement
from xml.etree.ElementTree import SubElement
import numpy as np
import doctr
from doctr.file_utils import requires_package
from doctr.utils.common_types import BoundingBox
from doctr.utils.geometry import resolve_enclosing_bbox, resolve_enclosing_rbbox
from doctr.utils.reconstitution import synthesize_kie_page, synthesize_page
from doctr.utils.repr import NestedObject
try: # optional dependency for visualization
from doctr.utils.visualization import visualize_kie_page, visualize_page
except ModuleNotFoundError:
pass
__all__ = ["Element", "Word", "Artefact", "Line", "Prediction", "Block", "Page", "KIEPage", "Document"]
class Element(NestedObject):
"""Implements an abstract document element with exporting and text rendering capabilities"""
_children_names: list[str] = []
_exported_keys: list[str] = []
def __init__(self, **kwargs: Any) -> None:
for k, v in kwargs.items():
if k in self._children_names:
setattr(self, k, v)
else:
raise KeyError(f"{self.__class__.__name__} object does not have any attribute named '{k}'")
def export(self) -> dict[str, Any]:
"""Exports the object into a nested dict format"""
export_dict = {k: getattr(self, k) for k in self._exported_keys}
for children_name in self._children_names:
if children_name in ["predictions"]:
export_dict[children_name] = {
k: [item.export() for item in c] for k, c in getattr(self, children_name).items()
}
else:
export_dict[children_name] = [c.export() for c in getattr(self, children_name)]
return export_dict
@classmethod
def from_dict(cls, save_dict: dict[str, Any], **kwargs):
raise NotImplementedError
def render(self) -> str:
raise NotImplementedError
[docs]
class Word(Element):
"""Implements a word element
Args:
value: the text string of the word
confidence: the confidence associated with the text prediction
geometry: bounding box of the word in format ((xmin, ymin), (xmax, ymax)) where coordinates are relative to
the page's size
objectness_score: the objectness score of the detection
crop_orientation: the general orientation of the crop in degrees and its confidence
"""
_exported_keys: list[str] = ["value", "confidence", "geometry", "objectness_score", "crop_orientation"]
_children_names: list[str] = []
def __init__(
self,
value: str,
confidence: float,
geometry: BoundingBox | np.ndarray,
objectness_score: float,
crop_orientation: dict[str, Any],
) -> None:
super().__init__()
self.value = value
self.confidence = confidence
self.geometry = geometry
self.objectness_score = objectness_score
self.crop_orientation = crop_orientation
def render(self) -> str:
"""Renders the full text of the element"""
return self.value
def extra_repr(self) -> str:
return f"value='{self.value}', confidence={self.confidence:.2}"
@classmethod
def from_dict(cls, save_dict: dict[str, Any], **kwargs):
kwargs = {k: save_dict[k] for k in cls._exported_keys}
return cls(**kwargs)
[docs]
class Artefact(Element):
"""Implements a non-textual element
Args:
artefact_type: the type of artefact
confidence: the confidence of the type prediction
geometry: bounding box of the word in format ((xmin, ymin), (xmax, ymax)) where coordinates are relative to
the page's size.
"""
_exported_keys: list[str] = ["geometry", "type", "confidence"]
_children_names: list[str] = []
def __init__(self, artefact_type: str, confidence: float, geometry: BoundingBox) -> None:
super().__init__()
self.geometry = geometry
self.type = artefact_type
self.confidence = confidence
def render(self) -> str:
"""Renders the full text of the element"""
return f"[{self.type.upper()}]"
def extra_repr(self) -> str:
return f"type='{self.type}', confidence={self.confidence:.2}"
@classmethod
def from_dict(cls, save_dict: dict[str, Any], **kwargs):
kwargs = {k: save_dict[k] for k in cls._exported_keys}
return cls(**kwargs)
[docs]
class Line(Element):
"""Implements a line element as a collection of words
Args:
words: list of word elements
geometry: bounding box of the word in format ((xmin, ymin), (xmax, ymax)) where coordinates are relative to
the page's size. If not specified, it will be resolved by default to the smallest bounding box enclosing
all words in it.
"""
_exported_keys: list[str] = ["geometry", "objectness_score"]
_children_names: list[str] = ["words"]
words: list[Word] = []
def __init__(
self,
words: list[Word],
geometry: BoundingBox | np.ndarray | None = None,
objectness_score: float | None = None,
) -> None:
# Compute the objectness score of the line
if objectness_score is None:
objectness_score = float(np.mean([w.objectness_score for w in words]))
# Resolve the geometry using the smallest enclosing bounding box
if geometry is None:
# Check whether this is a rotated or straight box
box_resolution_fn = resolve_enclosing_rbbox if len(words[0].geometry) == 4 else resolve_enclosing_bbox
geometry = box_resolution_fn([w.geometry for w in words]) # type: ignore[misc]
super().__init__(words=words)
self.geometry = geometry
self.objectness_score = objectness_score
def render(self) -> str:
"""Renders the full text of the element"""
return " ".join(w.render() for w in self.words)
@classmethod
def from_dict(cls, save_dict: dict[str, Any], **kwargs):
kwargs = {k: save_dict[k] for k in cls._exported_keys}
kwargs.update({
"words": [Word.from_dict(_dict) for _dict in save_dict["words"]],
})
return cls(**kwargs)
class Prediction(Word):
"""Implements a prediction element"""
def render(self) -> str:
"""Renders the full text of the element"""
return self.value
def extra_repr(self) -> str:
return f"value='{self.value}', confidence={self.confidence:.2}, bounding_box={self.geometry}"
[docs]
class Block(Element):
"""Implements a block element as a collection of lines and artefacts
Args:
lines: list of line elements
artefacts: list of artefacts
geometry: bounding box of the word in format ((xmin, ymin), (xmax, ymax)) where coordinates are relative to
the page's size. If not specified, it will be resolved by default to the smallest bounding box enclosing
all lines and artefacts in it.
"""
_exported_keys: list[str] = ["geometry", "objectness_score"]
_children_names: list[str] = ["lines", "artefacts"]
lines: list[Line] = []
artefacts: list[Artefact] = []
def __init__(
self,
lines: list[Line] = [],
artefacts: list[Artefact] = [],
geometry: BoundingBox | np.ndarray | None = None,
objectness_score: float | None = None,
) -> None:
# Compute the objectness score of the line
if objectness_score is None:
objectness_score = float(np.mean([w.objectness_score for line in lines for w in line.words]))
# Resolve the geometry using the smallest enclosing bounding box
if geometry is None:
line_boxes = [word.geometry for line in lines for word in line.words]
artefact_boxes = [artefact.geometry for artefact in artefacts]
box_resolution_fn = (
resolve_enclosing_rbbox if isinstance(lines[0].geometry, np.ndarray) else resolve_enclosing_bbox
)
geometry = box_resolution_fn(line_boxes + artefact_boxes) # type: ignore
super().__init__(lines=lines, artefacts=artefacts)
self.geometry = geometry
self.objectness_score = objectness_score
def render(self, line_break: str = "\n") -> str:
"""Renders the full text of the element"""
return line_break.join(line.render() for line in self.lines)
@classmethod
def from_dict(cls, save_dict: dict[str, Any], **kwargs):
kwargs = {k: save_dict[k] for k in cls._exported_keys}
kwargs.update({
"lines": [Line.from_dict(_dict) for _dict in save_dict["lines"]],
"artefacts": [Artefact.from_dict(_dict) for _dict in save_dict["artefacts"]],
})
return cls(**kwargs)
[docs]
class Page(Element):
"""Implements a page element as a collection of blocks
Args:
page: image encoded as a numpy array in uint8
blocks: list of block elements
page_idx: the index of the page in the input raw document
dimensions: the page size in pixels in format (height, width)
orientation: a dictionary with the value of the rotation angle in degress and confidence of the prediction
language: a dictionary with the language value and confidence of the prediction
"""
_exported_keys: list[str] = ["page_idx", "dimensions", "orientation", "language"]
_children_names: list[str] = ["blocks"]
blocks: list[Block] = []
def __init__(
self,
page: np.ndarray,
blocks: list[Block],
page_idx: int,
dimensions: tuple[int, int],
orientation: dict[str, Any] | None = None,
language: dict[str, Any] | None = None,
) -> None:
super().__init__(blocks=blocks)
self.page = page
self.page_idx = page_idx
self.dimensions = dimensions
self.orientation = orientation if isinstance(orientation, dict) else dict(value=None, confidence=None)
self.language = language if isinstance(language, dict) else dict(value=None, confidence=None)
def render(self, block_break: str = "\n\n") -> str:
"""Renders the full text of the element"""
return block_break.join(b.render() for b in self.blocks)
def extra_repr(self) -> str:
return f"dimensions={self.dimensions}"
[docs]
def show(self, interactive: bool = True, preserve_aspect_ratio: bool = False, **kwargs) -> None:
"""Overlay the result on a given image
Args:
interactive: whether the display should be interactive
preserve_aspect_ratio: pass True if you passed True to the predictor
**kwargs: additional keyword arguments passed to the matplotlib.pyplot.show method
"""
requires_package("matplotlib", "`.show()` requires matplotlib & mplcursors installed")
requires_package("mplcursors", "`.show()` requires matplotlib & mplcursors installed")
import matplotlib.pyplot as plt
visualize_page(self.export(), self.page, interactive=interactive, preserve_aspect_ratio=preserve_aspect_ratio)
plt.show(**kwargs)
def synthesize(self, **kwargs) -> np.ndarray:
"""Synthesize the page from the predictions
Args:
**kwargs: keyword arguments passed to the `synthesize_page` method
Returns:
synthesized page
"""
return synthesize_page(self.export(), **kwargs)
def export_as_xml(self, file_title: str = "docTR - XML export (hOCR)") -> tuple[bytes, ET.ElementTree]:
"""Export the page as XML (hOCR-format)
convention: https://github.com/kba/hocr-spec/blob/master/1.2/spec.md
Args:
file_title: the title of the XML file
Returns:
a tuple of the XML byte string, and its ElementTree
"""
p_idx = self.page_idx
block_count: int = 1
line_count: int = 1
word_count: int = 1
height, width = self.dimensions
language = self.language if "language" in self.language.keys() else "en"
# Create the XML root element
page_hocr = ETElement("html", attrib={"xmlns": "http://www.w3.org/1999/xhtml", "xml:lang": str(language)})
# Create the header / SubElements of the root element
head = SubElement(page_hocr, "head")
SubElement(head, "title").text = file_title
SubElement(head, "meta", attrib={"http-equiv": "Content-Type", "content": "text/html; charset=utf-8"})
SubElement(
head,
"meta",
attrib={"name": "ocr-system", "content": f"python-doctr {doctr.__version__}"}, # type: ignore[attr-defined]
)
SubElement(
head,
"meta",
attrib={"name": "ocr-capabilities", "content": "ocr_page ocr_carea ocr_par ocr_line ocrx_word"},
)
# Create the body
body = SubElement(page_hocr, "body")
SubElement(
body,
"div",
attrib={
"class": "ocr_page",
"id": f"page_{p_idx + 1}",
"title": f"image; bbox 0 0 {width} {height}; ppageno 0",
},
)
# iterate over the blocks / lines / words and create the XML elements in body line by line with the attributes
for block in self.blocks:
if len(block.geometry) != 2:
raise TypeError("XML export is only available for straight bounding boxes for now.")
(xmin, ymin), (xmax, ymax) = block.geometry
block_div = SubElement(
body,
"div",
attrib={
"class": "ocr_carea",
"id": f"block_{block_count}",
"title": f"bbox {int(round(xmin * width))} {int(round(ymin * height))} \
{int(round(xmax * width))} {int(round(ymax * height))}",
},
)
paragraph = SubElement(
block_div,
"p",
attrib={
"class": "ocr_par",
"id": f"par_{block_count}",
"title": f"bbox {int(round(xmin * width))} {int(round(ymin * height))} \
{int(round(xmax * width))} {int(round(ymax * height))}",
},
)
block_count += 1
for line in block.lines:
(xmin, ymin), (xmax, ymax) = line.geometry
# NOTE: baseline, x_size, x_descenders, x_ascenders is currently initalized to 0
line_span = SubElement(
paragraph,
"span",
attrib={
"class": "ocr_line",
"id": f"line_{line_count}",
"title": f"bbox {int(round(xmin * width))} {int(round(ymin * height))} \
{int(round(xmax * width))} {int(round(ymax * height))}; \
baseline 0 0; x_size 0; x_descenders 0; x_ascenders 0",
},
)
line_count += 1
for word in line.words:
(xmin, ymin), (xmax, ymax) = word.geometry
conf = word.confidence
word_div = SubElement(
line_span,
"span",
attrib={
"class": "ocrx_word",
"id": f"word_{word_count}",
"title": f"bbox {int(round(xmin * width))} {int(round(ymin * height))} \
{int(round(xmax * width))} {int(round(ymax * height))}; \
x_wconf {int(round(conf * 100))}",
},
)
# set the text
word_div.text = word.value
word_count += 1
return (ET.tostring(page_hocr, encoding="utf-8", method="xml"), ET.ElementTree(page_hocr))
@classmethod
def from_dict(cls, save_dict: dict[str, Any], **kwargs):
kwargs = {k: save_dict[k] for k in cls._exported_keys}
kwargs.update({"blocks": [Block.from_dict(block_dict) for block_dict in save_dict["blocks"]]})
return cls(**kwargs)
class KIEPage(Element):
"""Implements a KIE page element as a collection of predictions
Args:
predictions: Dictionary with list of block elements for each detection class
page: image encoded as a numpy array in uint8
page_idx: the index of the page in the input raw document
dimensions: the page size in pixels in format (height, width)
orientation: a dictionary with the value of the rotation angle in degress and confidence of the prediction
language: a dictionary with the language value and confidence of the prediction
"""
_exported_keys: list[str] = ["page_idx", "dimensions", "orientation", "language"]
_children_names: list[str] = ["predictions"]
predictions: dict[str, list[Prediction]] = {}
def __init__(
self,
page: np.ndarray,
predictions: dict[str, list[Prediction]],
page_idx: int,
dimensions: tuple[int, int],
orientation: dict[str, Any] | None = None,
language: dict[str, Any] | None = None,
) -> None:
super().__init__(predictions=predictions)
self.page = page
self.page_idx = page_idx
self.dimensions = dimensions
self.orientation = orientation if isinstance(orientation, dict) else dict(value=None, confidence=None)
self.language = language if isinstance(language, dict) else dict(value=None, confidence=None)
def render(self, prediction_break: str = "\n\n") -> str:
"""Renders the full text of the element"""
return prediction_break.join(
f"{class_name}: {p.render()}" for class_name, predictions in self.predictions.items() for p in predictions
)
def extra_repr(self) -> str:
return f"dimensions={self.dimensions}"
def show(self, interactive: bool = True, preserve_aspect_ratio: bool = False, **kwargs) -> None:
"""Overlay the result on a given image
Args:
interactive: whether the display should be interactive
preserve_aspect_ratio: pass True if you passed True to the predictor
**kwargs: keyword arguments passed to the matplotlib.pyplot.show method
"""
requires_package("matplotlib", "`.show()` requires matplotlib & mplcursors installed")
requires_package("mplcursors", "`.show()` requires matplotlib & mplcursors installed")
import matplotlib.pyplot as plt
visualize_kie_page(
self.export(), self.page, interactive=interactive, preserve_aspect_ratio=preserve_aspect_ratio
)
plt.show(**kwargs)
def synthesize(self, **kwargs) -> np.ndarray:
"""Synthesize the page from the predictions
Args:
**kwargs: keyword arguments passed to the `synthesize_kie_page` method
Returns:
synthesized page
"""
return synthesize_kie_page(self.export(), **kwargs)
def export_as_xml(self, file_title: str = "docTR - XML export (hOCR)") -> tuple[bytes, ET.ElementTree]:
"""Export the page as XML (hOCR-format)
convention: https://github.com/kba/hocr-spec/blob/master/1.2/spec.md
Args:
file_title: the title of the XML file
Returns:
a tuple of the XML byte string, and its ElementTree
"""
p_idx = self.page_idx
prediction_count: int = 1
height, width = self.dimensions
language = self.language if "language" in self.language.keys() else "en"
# Create the XML root element
page_hocr = ETElement("html", attrib={"xmlns": "http://www.w3.org/1999/xhtml", "xml:lang": str(language)})
# Create the header / SubElements of the root element
head = SubElement(page_hocr, "head")
SubElement(head, "title").text = file_title
SubElement(head, "meta", attrib={"http-equiv": "Content-Type", "content": "text/html; charset=utf-8"})
SubElement(
head,
"meta",
attrib={"name": "ocr-system", "content": f"python-doctr {doctr.__version__}"}, # type: ignore[attr-defined]
)
SubElement(
head,
"meta",
attrib={"name": "ocr-capabilities", "content": "ocr_page ocr_carea ocr_par ocr_line ocrx_word"},
)
# Create the body
body = SubElement(page_hocr, "body")
SubElement(
body,
"div",
attrib={
"class": "ocr_page",
"id": f"page_{p_idx + 1}",
"title": f"image; bbox 0 0 {width} {height}; ppageno 0",
},
)
# iterate over the blocks / lines / words and create the XML elements in body line by line with the attributes
for class_name, predictions in self.predictions.items():
for prediction in predictions:
if len(prediction.geometry) != 2:
raise TypeError("XML export is only available for straight bounding boxes for now.")
(xmin, ymin), (xmax, ymax) = prediction.geometry
prediction_div = SubElement(
body,
"div",
attrib={
"class": "ocr_carea",
"id": f"{class_name}_prediction_{prediction_count}",
"title": f"bbox {int(round(xmin * width))} {int(round(ymin * height))} \
{int(round(xmax * width))} {int(round(ymax * height))}",
},
)
prediction_div.text = prediction.value
prediction_count += 1
return ET.tostring(page_hocr, encoding="utf-8", method="xml"), ET.ElementTree(page_hocr)
@classmethod
def from_dict(cls, save_dict: dict[str, Any], **kwargs):
kwargs = {k: save_dict[k] for k in cls._exported_keys}
kwargs.update({
"predictions": [Prediction.from_dict(predictions_dict) for predictions_dict in save_dict["predictions"]]
})
return cls(**kwargs)
[docs]
class Document(Element):
"""Implements a document element as a collection of pages
Args:
pages: list of page elements
"""
_children_names: list[str] = ["pages"]
pages: list[Page] = []
def __init__(
self,
pages: list[Page],
) -> None:
super().__init__(pages=pages)
def render(self, page_break: str = "\n\n\n\n") -> str:
"""Renders the full text of the element"""
return page_break.join(p.render() for p in self.pages)
[docs]
def show(self, **kwargs) -> None:
"""Overlay the result on a given image"""
for result in self.pages:
result.show(**kwargs)
def synthesize(self, **kwargs) -> list[np.ndarray]:
"""Synthesize all pages from their predictions
Args:
**kwargs: keyword arguments passed to the `Page.synthesize` method
Returns:
list of synthesized pages
"""
return [page.synthesize(**kwargs) for page in self.pages]
def export_as_xml(self, **kwargs) -> list[tuple[bytes, ET.ElementTree]]:
"""Export the document as XML (hOCR-format)
Args:
**kwargs: additional keyword arguments passed to the Page.export_as_xml method
Returns:
list of tuple of (bytes, ElementTree)
"""
return [page.export_as_xml(**kwargs) for page in self.pages]
@classmethod
def from_dict(cls, save_dict: dict[str, Any], **kwargs):
kwargs = {k: save_dict[k] for k in cls._exported_keys}
kwargs.update({"pages": [Page.from_dict(page_dict) for page_dict in save_dict["pages"]]})
return cls(**kwargs)
class KIEDocument(Document):
"""Implements a document element as a collection of pages
Args:
pages: list of page elements
"""
_children_names: list[str] = ["pages"]
pages: list[KIEPage] = [] # type: ignore[assignment]
def __init__(
self,
pages: list[KIEPage],
) -> None:
super().__init__(pages=pages) # type: ignore[arg-type]